已知數(shù)列{an}滿足an=
(-1)n
an-1
+1(n≥2),若a7=
7
11
,則a5=
 
考點(diǎn):數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:由已知得
7
11
=
-1
a6
+1
,解得a6=
11
4
,再由
11
4
=
1
a5
+1,能求出a5=
4
7
解答: 解:∵數(shù)列{an}滿足an=
(-1)n
an-1
+1(n≥2),a7=
7
11
,
7
11
=
-1
a6
+1
,解得a6=
11
4

11
4
=
1
a5
+1,
解得a5=
4
7

故答案為:
4
7
點(diǎn)評(píng):本題考查數(shù)列的第5項(xiàng)的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意數(shù)列的遞推公式的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知0<a<1,則在同一坐標(biāo)系中,函數(shù)y=a-x,和y=loga(-x)的圖象只可能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c∈(0,1).
(1)求證:a+b<ab+1;
(2)利用(1)的結(jié)論證明:a+b+c<abc+2;
(3)由(1)(2)寫(xiě)出推廣的結(jié)論(不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線y=kx-k+1與曲線y=
1-x2
恰有兩個(gè)公共點(diǎn),則k的取值范圍(  )
A、(
1
2
,+∞)
B、(0,
1
2
]
C、(0,2]
D、k=0或k∈(-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式ax2+bx+c>0的解集是{x|x<1或x>3},則a:b:c=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知指數(shù)函數(shù)y=f(x),對(duì)數(shù)函數(shù)y=g(x)和冪函數(shù)y=h(x)的圖象都過(guò)P(
1
2
,2),如果f(x1)=g(x2)=h(x3)=4,那么xl+x2+x3=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,
m
=(cosA-2cosC,cosB),
n
=(2c-a,b),且
m
n

(1)求
sinA
sinC
的值;
(2)若b=2
7
,B=
3
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的函數(shù)f(x)在(-∞,2)上是增函數(shù),且f(x+2)的圖象關(guān)于y軸對(duì)稱,則( 。
A、f(-1)<f(3)
B、f(0)>f(3)
C、f(-1)=f(3)
D、f(0)=f(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列各組函數(shù)中,f(x)與g(x)相等的一組是( 。
A、f(x)=
1-x2
,g(x)=
1-x
1+x
B、f(x)=x,g(x)=
x2
C、f(x)=2log3(x-1),g(x)=log3(x-1)2
D、f(x)=x-1,g(x)=
x2-1
x+1

查看答案和解析>>

同步練習(xí)冊(cè)答案