設(shè)數(shù)列滿足:是整數(shù),且是關(guān)于x的方程
的根.
(1)若且n≥2時(shí),求數(shù)列{an}的前100項(xiàng)和S100;
(2)若且求數(shù)列的通項(xiàng)公式.
(1); (2)。
解析試題分析:(1)由an+1-an是關(guān)于x的方程x2+( an+1-2)x-2an+1=0的根,
可得:,
所以對(duì)一切的正整數(shù),或,
若a1=4,且n≥2時(shí),4≤an≤8,則數(shù)列{an}為:
所以,數(shù)列{an}的前100項(xiàng)和;
(2)若a1=-8,根據(jù)an(n∈N*)是整數(shù),an<an+1(n∈N*),且或
可知,數(shù)列的前6項(xiàng)是:或或或或
因?yàn)閍6=1,所以數(shù)列的前6項(xiàng)只能是且時(shí),所以,數(shù)列{an}的通項(xiàng)公式是:
考點(diǎn):本題主要考查數(shù)列的通項(xiàng)公式、求和公式,分段函數(shù)的概念。
點(diǎn)評(píng):中檔題,等比數(shù)列、等差數(shù)列相關(guān)內(nèi)容,已是高考必考內(nèi)容,其難度飄忽不定,有時(shí)突出考查求和問題,如“分組求和法”、“裂項(xiàng)相消法”、“錯(cuò)位相減法”等,有時(shí)則突出涉及數(shù)列的證明題。本題解法中,注意通過研究滿足的條件,發(fā)現(xiàn)數(shù)列特征,確定得到數(shù)列的通項(xiàng)公式,帶有普遍性。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列滿足,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和;
(3)設(shè),記,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{}的前項(xiàng)和為
(1)求證:數(shù)列是等比數(shù)列;
(2)設(shè)數(shù)列{}的前項(xiàng)和為,求 。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知點(diǎn)(1,)是函數(shù)且)的圖象上一點(diǎn),等比數(shù)列的前項(xiàng)和為,數(shù)列的首項(xiàng)為,且前項(xiàng)和滿足().
(1)求數(shù)列和的通項(xiàng)公式;
(2)若數(shù)列{前項(xiàng)和為,問>的最小正整數(shù)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)設(shè)是公差的等差數(shù)列,是各項(xiàng)都為正數(shù)的等比數(shù)列,且,
.
(1)求數(shù)列和的通項(xiàng)公式;
(2)設(shè)…),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(滿分13分)已知各項(xiàng)均為正數(shù)的數(shù)列是數(shù)列的前n項(xiàng)和,對(duì)任意,有2Sn=2.
(Ⅰ)求常數(shù)p的值;
(Ⅱ)求數(shù)列的通項(xiàng)公式;
(Ⅲ)記,()若數(shù)列從第二項(xiàng)起每一項(xiàng)都比它的前一項(xiàng)大,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知數(shù)列滿足:(其中常數(shù)).
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)求證:當(dāng)時(shí),數(shù)列中的任何三項(xiàng)都不可能成等比數(shù)列;
(Ⅲ)設(shè)為數(shù)列的前項(xiàng)和.求證:若任意,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)a2,a5是方程x 2-12x+27=0的兩根,數(shù)列{}是公差為正數(shù)的等差數(shù)列,數(shù)列{}的前n項(xiàng)和為,且=1-
(1)求數(shù)列{},{}的通項(xiàng)公式;
(2)記=,求數(shù)列{}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列滿足
(1)證明:數(shù)列是等差數(shù)列; (2)求數(shù)列的通項(xiàng)公式;
(3)設(shè),求數(shù)列的前項(xiàng)和。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com