“x=3”是“x2=9”的
 
條件.
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:x=3⇒x2=9,反之不成立,例如x=-3.即可判斷出.
解答: 解:x=3⇒x2=9,反之不成立,例如x=-3.
因此:“x=3”是“x2=9”的充分不必要條件.
故答案為:充分不必要.
點評:本題考查了充要條件的判定方法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中正確的是( 。
A、命題“?x∈R,使得x2-1<0”的否定是“?x∈R,均有x2-1>0”
B、命題“若cosx=cosy,則x=y”的逆否命題是真命題:
C、命題”若x=3,則x2-2x-3=0”的否命題是“若x≠3,則x2-2x-3≠0”
D、命題“存在四邊相等的四邊形不是正方形”是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
x2
ax+b
(a,b為常數(shù)),且方程f(x)-x+12=0有兩個實數(shù)根3和4.
(1)求f(x)的解析式;
(2)若f(x)=-2m的兩根為x1,x2,求x12+x22的取值范圍;
(3)解不等式f(x)≥
1
2-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|2a-2<x<a},B={x|
3
x-1
≥1},且A⊆∁RB,
(1)求集合∁RB;      
(2)求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(θ)=
sinθ-1
cosθ-2
的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線C:y=cosx+lnx+2在x=
π
2
處的切線斜率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a+bx
x
,g(x)=ax.
(Ⅰ)當(dāng)a=b=1時,利用函數(shù)單調(diào)性的定義證明f(x)在區(qū)間(0,+∞)上是單調(diào)減函數(shù);
(Ⅱ)若函數(shù)f(x)+g(x)在區(qū)間(1,+∞)上是單調(diào)增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-ax(a≠0),g(x)=lnx,f(x)圖象與x軸異于原點的交點M處的切線為l1,g(x-1)與x軸的交點N處的切線為l2,并且l1與l2平行.
(1)求f(2)的值;
(2)已知實數(shù)t≥
1
2
,求u=xlnx,x∈[1,e]的取值范圍及函數(shù)y=f(u+t)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知球的表面積為4π,則其半徑為
 

查看答案和解析>>

同步練習(xí)冊答案