已知a為實數(shù),

(1)求導數(shù);

(2),求函數(shù)f(x)[2,2]上的最大值和最小值;

(3)若函數(shù)f(x)(-∞,-2][2,+∞)上都是遞增的,求a的取值范圍.

答案:略
解析:

(1)由原式可得,所以,

(2),此時,.令,得x=1.又,,f(2)=f(2)=0.所以函數(shù)f(x)[2,2]上的最大值為,最小值為

(3)的圖象為開口向上且過點(0,-4)的拋物線,由條件可得解得-2a2,所以a的取值范圍為[2,2]


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=x2+4x.
(1)求函數(shù)f(x)的解析式;
(2)已知a為實數(shù),且f(a2-a)<f(4a-4),求函數(shù)g(x)=
x
(x-a)在區(qū)間[0,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a為實數(shù),函數(shù)f(x)=(x2+1)(x+a).
(1)若f'(-1)=0,求函數(shù)y=f(x)在[-
32
,1]上的最大值和最小值;
(2)若函數(shù)f(x)的圖象上有與x軸平行的切線,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a為實數(shù),則“0<a<
1
2
”是“函數(shù)f(x)=a|x-1|在(0,1)上單調(diào)遞增”的( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•青浦區(qū)二模)已知a為實數(shù),函數(shù)f(θ)=sinθ+a+3.
(1)若f(θ)=cosθ(θ∈R),試求a的取值范圍;
(2)若a>1,g(θ)=
3(a-1)sinθ+1
,求函數(shù)f(θ)+g(θ)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a為實數(shù),p:點M(1,1)在圓(x+a)2+(y-a)2=4的內(nèi)部; q:?x∈R,都有x2+ax+1≥0.
(1)若p為真命題,求a的取值范圍;
(2)若q為假命題,求a的取值范圍;
(3)若“p且q”為假命題,且“p或q”為真命題,求a的取值范圍.

查看答案和解析>>

同步練習冊答案