17.在平面直角坐標(biāo)系xOy中有不共線三點(diǎn)P(a1,b1),A(a2,b2),B(a3,b3).實(shí)數(shù)λ,μ滿足λ+μ=λμ≠0,則以P為起點(diǎn)的向量$λ\overrightarrow{PA}$,$μ\overrightarrow{PB}$的終點(diǎn)連線一定過點(diǎn)( 。
A.(a2+a3-a1,b2+b3-b1B.(b2+b3-b1,a2+a3-a1
C.(a2+a3-2a1,b2+b3-2b1D.(b2+b3-2b1,a2+a3-2a1

分析 對(duì)于向量$\frac{1}{2}$($λ\overrightarrow{PA}$+$μ\overrightarrow{PB}$)=$\frac{1}{2}$(λa2+μa3-(λ+μ)a1,λb2+μb3-(λ+μ)b1),取λ=μ=2,即可判斷出結(jié)論.

解答 解:向量$\frac{1}{2}$($λ\overrightarrow{PA}$+$μ\overrightarrow{PB}$)=$\frac{1}{2}$(λa2+μa3-(λ+μ)a1,λb2+μb3-(λ+μ)b1),
由實(shí)數(shù)λ,μ滿足λ+μ=λμ≠0,
可取λ=μ=2,可得:向量$\frac{1}{2}$($λ\overrightarrow{PA}$+$μ\overrightarrow{PB}$)=(a2+a3-2a1,b2+b3-2b1),
故選:C.

點(diǎn)評(píng) 本題考查了向量平行四邊形法則、向量坐標(biāo)運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知曲線C的參數(shù)方程為$\left\{{\begin{array}{l}{x=3cosθ}\\{y=2sinθ}\end{array}$(θ為參數(shù)),在同一平面直角坐標(biāo)系中,將曲線C上的點(diǎn)按坐標(biāo)變換$\left\{{\begin{array}{l}{x'=\frac{1}{3}x}\\{y'=\frac{1}{2}y}\end{array}}$得到曲線C',以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系.
(1)寫出曲線 C與曲線C'的極坐標(biāo)的方程;
(2)若過點(diǎn)A(2$\sqrt{2}$,$\frac{π}{4}}$)(極坐標(biāo))且傾斜角為$\frac{π}{3}$的直線l與曲線C交于M,N兩點(diǎn),試求|AM|•|AN|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,⊙O內(nèi)接四邊形ABCD的兩條對(duì)角線AC、BD交于點(diǎn)M,AP為⊙O的切線,∠BAP=∠BAC
(I)證明:△ABM≌△DBA;
(II )若BM=2,MD=3,求BC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知曲線C的極坐標(biāo)方程是ρ=4cosθ.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=m+t}\\{y=t}\end{array}\right.$(t是參數(shù)).
(1)若直線l與曲線C相交于A,B兩點(diǎn),且|AB|=2$\sqrt{3}$,試求實(shí)數(shù)m的值;
(2)設(shè)M(x,y)為曲線上任意一點(diǎn),求x+2y-2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知e是自然對(duì)數(shù)的底數(shù),F(xiàn)(x)=2ex-1+x+lnx,f(x)=a(x-1)+3
(1)設(shè)T(x)=F(x)-f(x),當(dāng)a=1+2e-1時(shí),求證:T(x)在(0,+∞)上單調(diào)遞增;
(2)若?x≥1,F(xiàn)(x)≥f(x),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在△ABC中,∠BAC的平分線交BC于點(diǎn)D,交△ABC的外接圓于點(diǎn)E,延長(zhǎng)AC交△DCE的外接圓于點(diǎn)F,DF=$\sqrt{14}$
(Ⅰ)求BD;
(Ⅱ)若∠AEF=90°,AD=3,求DE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=xlnx+mx2-m在定義域內(nèi)不存在極值點(diǎn),則實(shí)數(shù)m的取值范圍為(-∞,-$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=x3-tx2+3x,函數(shù)f(x)在區(qū)間(1,3)上單調(diào)遞減,則實(shí)數(shù)t的取值范圍是[5,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,設(shè)銳角△ABC的外接圓ω的圓心為O,經(jīng)過A,O,C三點(diǎn)的圓ω1的圓心為K,且與邊AB和BC分別相交于點(diǎn)M和N,現(xiàn)知點(diǎn)L與K關(guān)于直線MN對(duì)稱,證明:BL⊥AC.

查看答案和解析>>

同步練習(xí)冊(cè)答案