15.已知f(2x)=2x,那么f(8)等于( 。
A.$\frac{4}{3}$B.8C.18D.6

分析 方法一:求出f(x)的解析式,把x=8帶入計(jì)算即可.
方法二:利用復(fù)合函數(shù)的定義域的性質(zhì),解出x的值,進(jìn)行計(jì)算

解答 解法一:換元法
解:令2x=t,(t>0),則x=log2t
則f(t)=2log2t
那么:f(8)=$2lo{g}_{2}8=2lo{g}_{2}{2}^{3}=2×3=6$
解法二:
根據(jù)復(fù)合函數(shù)的定義域:
令2x=8,則有f(8)=2x
解得x=3,
那么:f(8)=2×3=6
故選D.

點(diǎn)評(píng) 本題考查了函數(shù)值的解析式的求法,帶值的計(jì)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.411除以5的余數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若x,y滿足約束條件$\left\{\begin{array}{l}x≥0\\ x+2y≥3\\ 2x+y≤3\end{array}\right.$,則z=3x-y的最小值是$\frac{1}{27}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在正方體ABCD-A1B1C1D1中,M為DD1的中點(diǎn),AB=2.
(1)求證:BD1∥平面ACM;
(2)求三棱錐M-ADC的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=4-x2,g(x)是定義在(-∞,0)∪(0,+∞)上的奇函數(shù),當(dāng)x>0時(shí),g(x)=lnx,則函數(shù)y=f(x)•g(x)的大致圖象為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知二次函數(shù)f(x)=x2-2ax+5,分別求下列條件下函數(shù)的最小值:
(1)當(dāng)a=1,x∈[-1,0];
(2)當(dāng)a<0,x∈[-1,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在銳角△ABC中,求證:sinA+sinB+sinC>cosA+cosB+cosC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知A(1,2),B(2,3),且點(diǎn)P滿足$\overrightarrow{AP}$=2$\overrightarrow{PB}$,則點(diǎn)P的坐標(biāo)為$(\frac{5}{3},\frac{8}{3})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,x>0}\\{1{6}^{x},x≤0}\end{array}\right.$,則f(f($\frac{1}{3}$))=$\frac{1}{16}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案