在三棱錐S-ABC中,△ABC是邊長為的正三角形,平面SAC⊥平面ABC,SA=SC=2,M、N分別為AB、SB的中點.
(1)證明:AC⊥SB;
(2)求三棱錐B-CMN的體積.
科目:高中數(shù)學(xué) 來源:2015屆吉林省高一上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
如圖,在三棱錐S-ABC中,G1,G2分別是△SAB和△SAC的重心,則直線G1G2與BC的位置關(guān)系是( )
A.相交 B.平行 C.異面 D.以上都有可能
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省高考模擬沖刺(提優(yōu))測試二理科數(shù)學(xué)試卷(解析版) 題型:填空題
在三棱錐S-ABC中,△ABC為正三角形,且A在面SBC上的射影H是△SBC的垂心,又二面角H-AB-C為300,則 ;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆湖北武漢部分重點中學(xué)高二上期中文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)
如圖,在三棱錐S-ABC中,BC⊥平面SAC,AD⊥SC.
(Ⅰ)求證:AD⊥平面SBC;
(Ⅱ)試在SB上找一點E,使得平面ABS⊥平面ADE,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆貴州高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)
如圖,在三棱錐S-ABC中,BC⊥平面SAC,AD⊥SC.
(I)求證:AD⊥平面SBC;
(II)試在SB上找一點E,使得BC//平面ADE,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆湖南師大附中高一下學(xué)期段考數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,在三棱錐S-ABC中,∠SAB=∠SAC=∠ABC=90°,SA=AB,SB=BC.
(Ⅰ)證明:平面SBC⊥平面SAB;
(Ⅱ)求二面角A-SC-B的平面角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com