若等比數(shù)列{an}滿足2a4=a6-a5,則q=(  )
A、-1或2B、1或-2
C、0D、-1或-2
考點:等比數(shù)列的通項公式
專題:等差數(shù)列與等比數(shù)列
分析:由已知條件利用等比數(shù)列的通項公式推導(dǎo)出q2-q-2=0,由此能求出q=-1或q=2.
解答: 解:∵等比數(shù)列{an}滿足2a4=a6-a5,
2a1q3=a1q5-a1q4,
整理,得:q2-q-2=0,
解得q=-1或q=2.
故選:A.
點評:本題考查等比數(shù)列的公比的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等比數(shù)列的通項公式的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2為雙曲線C:
x2
4
-y2=1的左、右焦點,點P在C上,∠F1PF2=60°,則P到x軸的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面坐標(biāo)系xOy中,拋物線y2=2px的焦點F與橢圓
x2
6
+
y2
2
=1的左焦點重合,點A在拋物線上,且|AF|=4,若P是拋物線準(zhǔn)線上一動點,則|PO|+|PA|的最小值為( 。
A、6
B、2+4
2
C、2
13
D、4+2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三角形ABC中,∠C=90°,AB=2,AC=1,若
AD
=
3
2
AB
,則
CD
CB
=(  )
A、
3
2
B、
6
2
C、
3
2
D、
9
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出四個函數(shù)圖象分別滿足:
①f(x+y)=f(x)+f(y);
②g(x+y)=g(x)•g(y);
③u(x•y)=u(x)+u(y);
④v(x•y)=v(x)•v(y).
與如圖函數(shù)圖象對應(yīng)的是( 。
A、①-a,②-b,③-c,④-d
B、①-b,②-c,③-a,④-d
C、①-a,②-c,③-b,④-d
D、①-d,②-a,③-b,④-c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C1:x2+y2+4ax+4a2-4=0和圓C2:x2+y2-2by+b2-1=0只有一條公切線,若a,b∈R且ab≠0,則
1
a2
+
1
b2
的最小值為( 。
A、2B、4C、8D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個物體的運動方程為s=1+t+t2,其中s的單位是米,t的單位是秒,那么物體在3秒末的瞬時速度是( 。
A、7米/秒B、6米/秒
C、5米/秒D、8米/秒

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,A,B,C所對邊分別為a,b,c,則下列各式中一定成立的是( 。
A、
a
cosA
=
b
cosB
B、
a
b
=
sinA
sinB
C、asinB=bcosA
D、a=2RcosA

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-(a+3)x+3alnx,(a∈R).
(1)若f(x)的圖象在x=1處的切線為l:y=b,求a,b的值及f(x)的單調(diào)區(qū)間;
(2)對于定義在正實數(shù)集R+上的函數(shù)S(x),T(x),若對任意x2>x1>0,均有S(x2)-S(x1)>k[T(x2)-T(x1)],(k∈R+),則稱函數(shù)S(x)是T(x)的“超k倍速”函數(shù),已知函數(shù)f(x)是g(x)=-x,(x∈R+)的“超3倍速”函數(shù),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案