設(shè)函數(shù)=x+ax2+blnx,曲線y=過P(1,0),且在P點(diǎn)處的切斜線率為2.
(1)求a,b的值;
(2)證明:≤2x-2.
(1)
(2)
而
解析試題分析:(1) 2分
由已知條件得
解得 5分
(2),由(I)知
設(shè)則
8分
而 12分考點(diǎn):
考點(diǎn):本題主要考查導(dǎo)數(shù)的幾何意義,應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值,不等式的證明。
點(diǎn)評:中檔題,此類問題屬于導(dǎo)數(shù)應(yīng)用的基本問題,往往將單調(diào)性、極值、解析式等綜合在一起進(jìn)行考查,應(yīng)掌握好基本解題方法和步驟。切線的斜率等于函數(shù)在切點(diǎn)的導(dǎo)函數(shù)值。在某區(qū)間,導(dǎo)函數(shù)值非負(fù),則函數(shù)為增函數(shù);導(dǎo)函數(shù)值非正,則函數(shù)為減函數(shù)。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)當(dāng)時,求曲線在點(diǎn)處的切線方程;
(2)當(dāng)時,若在區(qū)間上的最小值為-2,求實(shí)數(shù)的取值范圍;
(3)若對任意,且恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若,求曲線在點(diǎn)處的切線方程;
(2)若函數(shù)在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù),若在上至少存在一點(diǎn),使得>成立,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)在區(qū)間上是增函數(shù),在區(qū)間,上是減函數(shù),又
(1)求的解析式;
(2)若在區(qū)間上恒有成立,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)若對任意的恒成立,求實(shí)數(shù)的最小值.
(2)若且關(guān)于的方程在上恰有兩個不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;
(3)設(shè)各項(xiàng)為正的數(shù)列滿足:求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
題文已知函數(shù).
(1)求函數(shù)的單調(diào)遞減區(qū)間;
(2)若不等式對一切恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(Ⅰ)若,試確定函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,且對于任意,恒成立,試確定實(shí)數(shù)的取值范圍;
(Ⅲ)設(shè)函數(shù),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),且。
(1)若函數(shù)在處的切線與軸垂直,求的極值。
(2)若函數(shù)在,求實(shí)數(shù)a的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中.
(I)若函數(shù)在區(qū)間(1,2)上不是單調(diào)函數(shù),試求的取值范圍;
(II)已知,如果存在,使得函數(shù)在處取得最小值,試求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com