若方程
x2
9-k
+
y2
k-1
=1
表示橢圓,則k的取值范圍是( 。
分析:根據(jù)方程
x2
9-k
+
y2
k-1
=1
表示橢圓,可得9-k>0,k-1>0,且9-k≠k-1,從而可求k的取值范圍.
解答:解:∵方程
x2
9-k
+
y2
k-1
=1
表示橢圓
∴9-k>0,k-1>0,且9-k≠k-1
∴1<k<9,且k≠5
∴k的取值范圍是(1,5)∪(5,9)
故選C.
點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程,考查解不等式,忽視9-k≠k-1,是本題的易錯(cuò)點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:y=kx+1,橢圓E:
x2
9
+
y2
m2
=1(m>0)

(Ⅰ)若不論k取何值,直線l與橢圓E恒有公共點(diǎn),試求出m的取值范圍及橢圓離心率e關(guān)于m的函數(shù)關(guān)系式;
(Ⅱ)當(dāng)k=
10
3
時(shí),直線l與橢圓E相交于A,B兩點(diǎn),與y軸交于點(diǎn)M.若
AM
=2
MB
,求橢圓E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次曲線Ck的方程:
x2
9-k
+
y2
4-k
=1

(1)分別求出方程表示橢圓和雙曲線的條件;
(2)若雙曲線Ck與直線y=x+1有公共點(diǎn)且實(shí)軸最長,求雙曲線方程;
(3)m、n為正整數(shù),且m<n,是否存在兩條曲線Cm、Cn,其交點(diǎn)P與點(diǎn)F1(-
5
,0),F2(
5
,0)
滿足PF1⊥PF2,若存在,求m、n的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次曲線Ck的方程:
x2
9-k
+
y2
4-k
=1

(1)分別求出方程表示橢圓和雙曲線的條件;
(2)對(duì)于點(diǎn)P(-1,0),是否存在曲線Ck交直線y=x+1于A、B兩點(diǎn),使得
AB
=-2
BP
?若存在,求出k的值;若不存在,說明理由;
(3)已知Ck與直線y=x+1有公共點(diǎn),求其中實(shí)軸最長的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次曲線Ck的方程:
x2
9-k
+
y2
4-k
=1

(1)分別求出方程表示橢圓和雙曲線的條件;
(2)若雙曲線Ck與直線y=x+1有公共點(diǎn)且實(shí)軸最長,求雙曲線方程;
(3)m、n為正整數(shù),且m<n,是否存在兩條曲線Cm、Cn,其交點(diǎn)P與點(diǎn)F1(-
5
,0),F2(
5
,0)
滿足PF1⊥PF2,若存在,求m、n的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線l:y=kx+1,橢圓E:
x2
9
+
y2
m2
=1(m>0)

(Ⅰ)若不論k取何值,直線l與橢圓E恒有公共點(diǎn),試求出m的取值范圍及橢圓離心率e關(guān)于m的函數(shù)關(guān)系式;
(Ⅱ)當(dāng)k=
10
3
時(shí),直線l與橢圓E相交于A,B兩點(diǎn),與y軸交于點(diǎn)M.若
AM
=2
MB
,求橢圓E的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案