(2012•茂名二模)已知復(fù)數(shù)z=x+yi(x,y∈R),且|z-2|=1,則x,y滿足的軌跡方程是
(x-2)2+y2=1
(x-2)2+y2=1
分析:由復(fù)數(shù)的模的幾何意義可得,復(fù)數(shù)z對應(yīng)點(diǎn)在以(2,0)為圓心,以1為半徑的圓上,由此求得x,y滿足的軌跡方程.
解答:解:∵復(fù)數(shù)z=x+yi(x,y∈R),且|z-2|=1,由復(fù)數(shù)的模的幾何意義可得,復(fù)數(shù)z對應(yīng)點(diǎn)在以(2,0)為圓心,以1為半徑的圓上,
故x,y滿足的軌跡方程是  (x-2)2+y2=1.
故答案為 (x-2)2+y2=1.
點(diǎn)評:本題主要考查兩個復(fù)數(shù)差的絕對值的幾何意義,復(fù)數(shù)與復(fù)平面內(nèi)對應(yīng)點(diǎn)之間的關(guān)系,復(fù)數(shù)的模的定義,求圓的標(biāo)準(zhǔn)方程,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•茂名二模)(坐標(biāo)系與參數(shù)方程選做題)
已知曲線C的參數(shù)方程為
x=1+cosθ
y=sinθ
(θ為參數(shù)),則曲線C上的點(diǎn)到直線x+y+2=0的距離的最大值為
3
2
2
+1
3
2
2
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•茂名二模)已知函數(shù)f(x)=2
3
sin
x
3
cos
x
3
-2sin2
x
3

(1)求函數(shù)f(x)的值域;
(2)在△ABC中,角A,B,C所對的邊分別為a,b,c,若f(C)=1,且b2=ac,求sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•茂名二模)已知全集U=R,則正確表示集合M={0,1,2}和N={x|x2+2x=0}關(guān)系的韋恩(Venn)圖是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•茂名二模)長方體的一個頂點(diǎn)上的三條棱長分別是3,4,x,且它的8個頂點(diǎn)都在同一球面上,這個球的表面積是125π,則x的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•茂名二模)下列三個不等式中,恒成立的個數(shù)有( 。
①x+
1
x
≥2(x≠0);②
c
a
c
b
(a>b>c>0);③
a+m
b+m
a
b
(a,b,m>0,a<b).

查看答案和解析>>

同步練習(xí)冊答案