設(shè)函數(shù),已知曲線在點處的切線方程是
(1)求的值;并求出函數(shù)的單調(diào)區(qū)間;
(2)求函數(shù)在區(qū)間上的最值.

(1)的遞增區(qū)間為,的遞減區(qū)間為 ;
(2)。           

解析試題分析:(1)利用求導,曲線在某點處的切線方程的斜率等于在該點處導函數(shù)值,導函數(shù)大于0解不等式得到單調(diào)增區(qū)間,導函數(shù)小于0解不等式得到單調(diào)減區(qū)間。(2)利用單調(diào)區(qū)間,求區(qū)間內(nèi)的最大最小值,然后與端點的函數(shù)值進行比較,最大的為最大值,最小的為最小值。
試題解析:(1),,
.                                      3分
 
,得;令,得
的遞增區(qū)間為
的遞減區(qū)間為                          7分
(2)由(1)知列表得


-1



1

 

0

0

-1
遞增
極大
遞減
-1
 
由表得當時,
,
考點:1、導數(shù)在研究函數(shù)單調(diào)性中的應(yīng)用;2、利用函數(shù)單調(diào)性求函數(shù)的最值問題;

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

函數(shù)
(1)求函數(shù)的極值;
(2)設(shè)函數(shù),對,都有,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),其中是自然對數(shù)的底數(shù),
(1)若,求曲線在點處的切線方程;
(2)若,求的單調(diào)區(qū)間;
(3)若,函數(shù)的圖像與函數(shù)的圖像有3個不同的交點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=ax2-(a+2)x+ln x.
(1)當a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)當a>0時,若f(x)在區(qū)間[1,e]上的最小值為-2,求a的取值范圍;
(3)若對任意x1,x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,
(1)若的單調(diào)減區(qū)間是,求實數(shù)a的值;
(2)若對于定義域內(nèi)的任意x恒成立,求實數(shù)a的取值范圍;
(3)設(shè)有兩個極值點, 且.若恒成立,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)函數(shù)
(1)若時有極值,求實數(shù)的值和的極大值;
(2)若在定義域上是增函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)。
(1)若的單調(diào)減區(qū)間是,求實數(shù)a的值;
(2)若函數(shù)在區(qū)間上都為單調(diào)函數(shù)且它們的單調(diào)性相同,求實數(shù)a的取值范圍;
(3)a、b是函數(shù)的兩個極值點,a<b,。求證:對任意的,不等式成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)函數(shù).
(1)當為自然對數(shù)的底數(shù))時,求的最小值;
(2)討論函數(shù)零點的個數(shù);
(3)若對任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)函數(shù) 
(1) 當時,求函數(shù)的極值;
(2)若,證明:在區(qū)間內(nèi)存在唯一的零點;
(3)在(2)的條件下,設(shè)在區(qū)間內(nèi)的零點,判斷數(shù)列的增減性.

查看答案和解析>>

同步練習冊答案