已知動圓過定點(diǎn)Q(1,0),且與定直線x=-1相切.
(1)求此動圓圓心P的軌跡C的方程;
(2)若過點(diǎn)M(4,0)的直線l與曲線C分別相交于A,B兩點(diǎn),若2
AM
=
MB
,求直線l的方程.
分析:(1)利用拋物線的定義即可得出;
(2)設(shè)直線AB的方程為:y=k(x-4)(k存在且k≠0),把直線的方程與拋物線的方程聯(lián)立,利用根與系數(shù)的關(guān)系及已知向量相等即可得出直線的斜率,進(jìn)而得出直線的方程.
解答:精英家教網(wǎng)解:(1)由題意知,動圓圓心M的軌跡C是以定點(diǎn)Q(1,0)為焦點(diǎn),以定直線
x=-1為準(zhǔn)線的拋物線,其方程為:y2=4x;
(2)設(shè)直線AB的方程為:y=k(x-4)(k存在且k≠0).
聯(lián)立
y=k(x-4)
y2=4x
,消去x,得 ky2-4y-16k=0,
顯然△>0,
設(shè)A(x1,y1),B(x2,y2),
則 y1+y2=
4
k
,y1y2=-16.
AM
=(4-x1,-y1),
MB
=(x2-4,y2)

又∵2
AM
=
MB
,∴-2y1=y2
聯(lián)立
y1+y2=
4
k
y1y2=-16
-2y1=y2
,消去y1,y2得k2=2,解得k=±
2

∴直線l的方程為y=±
2
(x-4)
點(diǎn)評:熟練掌握拋物線的定義、直線與圓錐曲線相交問題的解題模式、根與系數(shù)的關(guān)系、向量相等的運(yùn)用是解題的關(guān)鍵,該題是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知動圓過定點(diǎn)A(1,0),且與直線x=-1相切.
(1)求動圓的圓心軌跡C的方程;
(2)若直線l過點(diǎn)A,并與軌跡C交于P,Q兩點(diǎn),且滿足
PA
=3
AQ
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知動圓過定點(diǎn)A(1,0),且與直線x=-1相切.
(1)求動圓的圓心軌跡C的方程;
(2)若直線l過點(diǎn)A,并與軌跡C交于P,Q兩點(diǎn),且滿足數(shù)學(xué)公式,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知動圓過定點(diǎn)A(1,0),且與直線x=-1相切.
(1)求動圓的圓心軌跡C的方程;
(2)若直線l過點(diǎn)A,并與軌跡C交于P,Q兩點(diǎn),且滿足
PA
=3
AQ
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年重慶市渝中區(qū)巴蜀中學(xué)高二(上)期末數(shù)學(xué)復(fù)習(xí)試卷(理科)(解析版) 題型:解答題

已知動圓過定點(diǎn)A(1,0),且與直線x=-1相切.
(1)求動圓的圓心軌跡C的方程;
(2)若直線l過點(diǎn)A,并與軌跡C交于P,Q兩點(diǎn),且滿足,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案