定義在[-2,2]上的奇函數(shù)g(x),在[0,2]上單調(diào)遞減.若g(1-m)-g(m)<0,則實(shí)數(shù)m的取值范圍是________.

[-1,
分析:首先要考慮函數(shù)的定義域,得出一個(gè)參數(shù)m的取值范圍,然后在根據(jù)奇函數(shù)在對(duì)稱區(qū)間上的單調(diào)性相同這一性質(zhì),得出在整個(gè)定義域上的單調(diào)情況,從而把原不等式通過移項(xiàng),再根據(jù)單調(diào)性去掉函數(shù)符號(hào),又得到一個(gè)參數(shù)的取值范圍,最后兩個(gè)范圍求交集可得最后的結(jié)果.
解答:∵g(x)定義在[-2,2]
即-1≤m≤2 ①
又∵g(x)定義在[-2,2]上的奇函數(shù),且在[0,2]上單調(diào)遞減
∴g(x)在[-2,0]上也單調(diào)遞減
∴g(x)在[-2,2]上單調(diào)遞減
又∵g(1-m)-g(m)<0?g(1-m)<g(m)
∴1-m>m 即m<
由①②可知:
故答案為:[-1,
點(diǎn)評(píng):本題主要考查了函數(shù)的單調(diào)性與奇偶性的關(guān)系性質(zhì),即:“奇函數(shù)在對(duì)稱區(qū)間上的單調(diào)性相同,偶函數(shù)在對(duì)稱區(qū)間上的單調(diào)性相反”.還要注意考慮定義域的問題,這一點(diǎn)常常容易忽略,所以本題也屬于易錯(cuò)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在[-2,2]上的偶函數(shù)f (x)在區(qū)間[一2,0]上單調(diào)遞增.若f(2一m)<f(m),則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在[-2,2]上的奇函數(shù)f(x),當(dāng)x≥0時(shí),f(x)單調(diào)遞減,若f(1-m)+f(m)<0成立,求m的取值范為
[-1,2]
[-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的奇函數(shù)f(x)有最小正周期4,且x∈(0,2)時(shí),f(x)=
3x9x+1

(1)判斷f(x)在(0,2)上的單調(diào)性,并給予證明;
(2)求f(x)在[-2,2]上的解析式;
(3)當(dāng)λ為何值時(shí),關(guān)于方程f(x)=λ在[-2,2]上有實(shí)數(shù)解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在[-2,2]上的奇函數(shù)f(x)在區(qū)間[-2,0]上單調(diào)遞減,若f(a)+f(a-1)>0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在[-2,2]上的奇函數(shù)y=f(x)在(0,2]上的圖象如圖所示,則不等式f(x)≥0的解集是
[-2,-1]∪[0,1]
[-2,-1]∪[0,1]

查看答案和解析>>

同步練習(xí)冊(cè)答案