10.已知全集U={1,2,3,4,5,6},A={2,4,6},B={1,2,3,5},則A∩(∁UB)等于( 。
A.{2}B.{4,6}C.{2,4,6}D.{1,2,3,4,5,6}

分析 求出集合B的補(bǔ)集,然后根據(jù)交集的定義和運(yùn)算法則進(jìn)行計(jì)算.

解答 解:U={1,2,3,4,5,6},A={2,4,6},B={1,2,3,5},
∴∁UB={4,6},
∴A∩(∁UB)={4,6},
故選:B.

點(diǎn)評(píng) 本題考查集合的交集、并集、補(bǔ)集的定義并用定義解決簡(jiǎn)單的集合運(yùn)算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知a1=1,an-2an-1=2n,則{an}的通項(xiàng)公式為(2n-1)×2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.過雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)左焦點(diǎn)F的弦AB⊥x軸,E為雙曲線的右頂點(diǎn),若△ABE為直角三角形,則雙曲線的離心率為( 。
A.2B.$\sqrt{2}$C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知命題p:曲線y=x2+(2m-3)x+1與x軸相交于不同的兩點(diǎn);命題q:$\frac{x^2}{m}+\frac{y^2}{2}$=1表示焦點(diǎn)在x軸上的橢圓.若“p且q”是假命題,“p或q”是真命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}3x-19\;\;\;(x≤0)\\{e^x}\;\;\;\;\;\;\;\;\;(x>0)\end{array}\right.$,若函數(shù)y=f(x)與y=kx恰有兩個(gè)不同的交點(diǎn)時(shí),則實(shí)數(shù)k的取值范圍( 。
A.(1,e)B.[1,3]C.(3,+∞)D.(e,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知$P=\left\{{\overrightarrow a\left|{\;}\right.\overrightarrow a=(1,0)+m(0,1),m∈R}\right\}$,$Q=\left\{{\overrightarrow b\left|{\;}\right.\overrightarrow b=(1,1)+n(1,1),n∈R}\right\}$,則P∩Q=( 。
A.{〔1,1〕}B.{〔-1,1〕}C.{〔1,0〕}D.{〔0,1〕}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知拋物線y2=2px(p>0)上點(diǎn)(2,a)到焦點(diǎn)F的距離為3,
(1)求拋物線C的方程;
(2)已知點(diǎn)M為拋物線的準(zhǔn)線與x軸的交點(diǎn),且直線l:x-y-2=0與拋物線C相交于A,B兩點(diǎn),求三角形ABM的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在空間四邊形ABCD中,E,F(xiàn),G,H分別是AC,BC,BD,DA的中點(diǎn),若$AB=12\sqrt{2}$,$CD=4\sqrt{2}$,且四邊形EFGH的面積為$12\sqrt{3}$,則AB和CD所成的角為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=ax2-|x|+2a-1(a為實(shí)常數(shù)).
( I)若a=1,求函數(shù)f(x)的單調(diào)區(qū)間;
( II)設(shè)f(x)在區(qū)間[1,2]上的最小值為g(a),求g(a)的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案