已知C與F是線段AB上的兩點,AB=12,AC=6,D是以A為圓心,AC為半徑的圓上的任意點,,線段FD的中垂線與直線AD交于點P。若P點的軌跡是雙曲線,則此雙曲線的離心率的取值范圍是                   
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知E、F為平面上的兩個定點|EF|=6,|FG|=10,且2
EH
=
EG
,
HP
GE
=0
(G為動點,P是HP和GF的交點).
(Ⅰ)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系求出點P的軌跡方程;
(Ⅱ)若點P的軌跡上存在兩個不同的點A、B,且線段AB的中垂線與直線EF相交于一點C,證明|OC|<
9
5
(O為EF的中點).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直三棱柱A1B1C1-ABC中,∠BAC=
π
2
,AB=AC=A1A=1,已知G與E分別是棱A1B1和CC1的中點,D與F分別是線段AC與AB上的動點(不包括端點).若GD⊥EF,則線段DF的長度的取值范圍是( 。
A、[
1
5
,1)
B、[
1
5
,2)
C、[1,
2
D、[
1
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知橢圓
x2
a2
+
y2
b2
=1(a>b>0),直線l與橢圓交于A、B兩點,M是線段AB的中點,連接OM并延長交橢圓于點C.直線AB與直線OM的斜率分別為k、m,且km=-
1
a2

(Ⅰ)求b的值;
(Ⅱ)若直線AB經(jīng)過橢圓的右焦點F,問:對于任意給定的不等于零的實數(shù)k,是否存在a∈[2,+∞),使得四邊形OACB是平行四邊形,請證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的右焦點F的直線L與橢圓交于A、B兩點,M是線段AB的中點,直線AB與直線OM(O是坐標(biāo)原點)的斜率分別為k、m,且km=-
1
a2

(Ⅰ)求b的值;
(Ⅱ)已知k=
2
4
,連接OM并延長交橢圓于點C,若四邊形OACB恰好是平行四邊形,求橢圓的方程.

查看答案和解析>>

同步練習(xí)冊答案