已知二次函數(shù),關(guān)于x的不等式的解集為,其中m為非零常數(shù).設(shè).
(1)求a的值;
(2)如何取值時,函數(shù)存在極值點,并求出極值點;
(3)若m=1,且x>0,求證:
科目:高中數(shù)學 來源: 題型:解答題
某商場銷售某種商品的經(jīng)驗表明,該商品每日的銷售量(單位:千克)與銷售價格(單位:元/千克)滿足關(guān)系式其中為常數(shù)。己知銷售價格為5元/千克時,每日可售出該商品11千克。
(1)求的值;
(2)若該商品的成本為3元/千克,試確定銷售價格的值,使商場每日銷售該商品所獲得的利潤最大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
(1)函數(shù)在區(qū)間上是增函數(shù)還是減函數(shù)?證明你的結(jié)論;
(2)當時,恒成立,求整數(shù)的最大值;
(3)試證明:()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)(、為常數(shù)),在時取得極值.
(1)求實數(shù)的取值范圍;
(2)當時,關(guān)于的方程有兩個不相等的實數(shù)根,求實數(shù)的取值范圍;
(3)數(shù)列滿足(且),,數(shù)列的前項和為,
求證:(,是自然對數(shù)的底).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
據(jù)統(tǒng)計某種汽車的最高車速為120千米∕時,在勻速行駛時每小時的耗油量(升)與行駛速度(千米∕時)之間有如下函數(shù)關(guān)系:。已知甲、乙兩地相距100千米。
(1)若汽車以40千米∕時的速度勻速行駛,則從甲地到乙地需耗油多少升?
(2)當汽車以多大的速度勻速行駛時,從甲地到乙地耗油最少?最少為多少升?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
(I)若,是否存在a,bR,y=f(x)為偶函數(shù).如果存在.請舉例并證明你的結(jié)論,如果不存在,請說明理由;
〔II)若a=2,b=1.求函數(shù)在R上的單調(diào)區(qū)間;
(III )對于給定的實數(shù)成立.求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè),函數(shù).
(1)若,求函數(shù)在區(qū)間上的最大值;
(2)若,寫出函數(shù)的單調(diào)區(qū)間(不必證明);
(3)若存在,使得關(guān)于的方程有三個不相等的實數(shù)解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)(其中為常數(shù)且)在處取得極值.
(I) 當時,求的單調(diào)區(qū)間;
(II) 若在上的最大值為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
甲、乙二人平時跑步路程與時間的關(guān)系以及百米賽跑路程和時間的關(guān)
系分別如圖①、②所示.問:
(1)甲、乙二人平時跑步哪一個跑得快?
(2)甲、乙二人百米賽跑,快到終點時,誰跑得快(設(shè)Δs為s的增量)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com