已知函數(shù) 
(1)函數(shù)在區(qū)間上是增函數(shù)還是減函數(shù)?證明你的結(jié)論;
(2)當(dāng)時(shí),恒成立,求整數(shù)的最大值;
(3)試證明:

(1)在區(qū)間上是減函數(shù);(2);(3)詳見解析

解析試題分析:(1)求導(dǎo)即可知,在區(qū)間上是減函數(shù);(2)將代入上恒成立,令,則 下面利用導(dǎo)數(shù)求出的最小值即可;(3)待證不等式的左邊是積的形式,而右邊是底數(shù)為的一個(gè)冪,故考慮兩邊取自然對(duì)數(shù),即原不等式轉(zhuǎn)化為: 注意用(2)題的結(jié)果 由(2)可得: 對(duì)照所要證明的不等式可知,需令,由此可得:

 
 
 
試題解析:(1)由題                 (3分)
在區(qū)間上是減函數(shù)                             (4分)
(2)當(dāng)時(shí),上恒成立,取,則,                                  (6分)
再取             (7分)
上單調(diào)遞增,
,            (8分)
上存在唯一實(shí)數(shù)根,
時(shí),時(shí),
          (9分)
(3)由(2)知:

所以
 
 
              14分
考點(diǎn):1、導(dǎo)數(shù)的應(yīng)用;2、導(dǎo)數(shù)與不等式

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)當(dāng)時(shí),求證:恒成立..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如右圖,由曲線與直線,所圍成平面圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),函數(shù)是區(qū)間上的減函數(shù).
(1)求的最大值;
(2)若恒成立,求的取值范圍;
(3)討論關(guān)于的方程的根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).
(1)若函數(shù)在區(qū)間(-2,0)內(nèi)恰有兩個(gè)零點(diǎn),求a的取值范圍;
(2)當(dāng)a=1時(shí),求函數(shù)在區(qū)間[t,t+3]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)時(shí)都取得極值.
(1)求的值;
(2)若對(duì),不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),,
(1)若曲線軸相切于異于原點(diǎn)的一點(diǎn),且函數(shù)的極小值為,求的值;
(2)若,且,
①求證:; ②求證:上存在極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù),關(guān)于x的不等式的解集為,其中m為非零常數(shù).設(shè).
(1)求a的值;
(2)如何取值時(shí),函數(shù)存在極值點(diǎn),并求出極值點(diǎn);
(3)若m=1,且x>0,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=x3-3ax2+2bx在點(diǎn)x=1處有極小值-1.
(1)求a、b;
(2)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案