【題目】《最強大腦》是大型科學競技類真人秀節(jié)目,是專注傳播腦科學知識和腦力競技的節(jié)目.某機構為了了解大學生喜歡《最強大腦》是否與性別有關,對某校的100名大學生進行了問卷調(diào)查,得到如下列聯(lián)表:

喜歡《最強大腦》

不喜歡《最強大腦》

合計

男生

15

女生

15

合計

已知在這100人中隨機抽取1人抽到不喜歡《最強大腦》的大學生的概率為0.4

( I)請將上述列聯(lián)表補充完整;判斷是否有99.9%的把握認為喜歡《最強大腦》與性別有關,并說明理由;

( II)已知在被調(diào)查的大學生中有5名是大一學生,其中3名喜歡《最強大腦》,現(xiàn)從這5名大一學生中隨機抽取2人,抽到喜歡《最強大腦》的人數(shù)為X,求X的分布列及數(shù)學期望.

下面的臨界值表僅參考:

P(K2≥k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:K2=,其中n=a+b+c+d)

【答案】(1)有99.9%的把握(2)見解析

【解析】試題分析:(1)對照表格填寫數(shù)據(jù),并將數(shù)據(jù)代入卡方公式,計算K2值,并與參考數(shù)據(jù)比較判定把握率(2)先確定隨機變量取法,根據(jù)組合數(shù)分別計算對應概率,列表可得分布列,最后根據(jù)數(shù)學期望公式求期望

試題解析:解:(Ⅰ)由題意知列聯(lián)表為:

喜歡《最強大腦》

不喜歡《最強大腦》

合計

男生

45

15

60

女生

15

25

40

合計

60

40

100

K2=≈14.063>10.828,

∴有99.9%的把握認為喜歡《最強大腦》與性別有關.

(II)X的可能取值為0,1,2,

P(X=0)==,

P(X=1)==

P(X=2)==,

∴X的分布列為:

X

0

1

2

P

EX==

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】根據(jù)國家環(huán)保部新修訂的《環(huán)境空氣質(zhì)量標準》規(guī)定:居民區(qū)PM2.5的年平均濃度不得超過35微克/立方米,PM2.5的24小時平均濃度不得超過75微克/立方米.我市環(huán)保局隨機抽取了一居民區(qū)2016年20天PM2.5的24小時平均濃度(單位:微克/立方米)的監(jiān)測數(shù)據(jù),數(shù)據(jù)統(tǒng)計如表

組別

PM2.5濃度
(微克/立方米)

頻數(shù)(天)

頻率

第一組

(0,25]

3

0.15

第二組

(25,50]

12

0.6

第三組

(50,75]

3

0.15

第四組

(75,100]

2

0.1


(1)從樣本中PM2.5的24小時平均濃度超過50微克/立方米的天數(shù)中,隨機抽取2天,求恰好有一天PM2.5的24小時平均濃度超過75微克/立方米的概率;
(2)將這20天的測量結果按上表中分組方法繪制成的樣本頻率分布直方圖如圖. ①求圖中a的值;
②求樣本平均數(shù),并根據(jù)樣本估計總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境質(zhì)量是否需要改善?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了了解初三女生身高情況,某中學對初三女生身高情況進行了一次測量,所得數(shù)據(jù)整理后列出了頻率分布表如下:

組 別

頻數(shù)

頻率

145.5~149.5

1

0.02

149.5~153.5

4

0.08

153.5~157.5

20

0.40

157.5~161.5

15

0.30

161.5~165.5

8

0.16

165.5~169.5

m

n

合 計

M

N


(1)求出表中m,n,M,N所表示的數(shù)分別是多少?
(2)畫出頻率分布直方圖;
(3)全體女生中身高在哪組范圍內(nèi)的人數(shù)最多?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾。疄榱私饽呈行姆渭膊∈欠衽c性別有關,在某醫(yī)院隨機的對入院50人進行了問卷調(diào)查得到了如下的列聯(lián)表:

患心肺疾病

不患心肺疾病

合計

20

5

25

10

15

25

合計

30

20

50

(Ⅰ)用分層抽樣的方法在患心肺疾病的人群中抽6人,其中男性抽多少人?
(Ⅱ)在上述抽取的6人中選2人,求恰有一名女性的概率;
(Ⅲ)為了研究心肺疾病是否與性別有關,請計算出統(tǒng)計量K2 , 你有多大的把握認為心肺疾病與性別有關?
下面的臨界值表供參考:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式 ,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4—4:坐標系與參數(shù)方程]以平面直角坐標系原點為極點,x軸正半軸為極軸,建立極坐標系,兩種坐標系中取相同長度單位,已知曲線的參數(shù)方程為,( 為參數(shù),且),曲線的極坐標方程為

(1)求的極坐標方程與的直角坐標方程;

(2))若P是上任意一點,過點P的直線于點M,N,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣mx,
(1)求函數(shù)f(x)的單調(diào)區(qū)間.
(2)若函數(shù)g(x)=f(x)﹣lnx+x2存在兩個零點,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC的三個頂點A(m,n)、B(2,1)、C(﹣2,3);
(1)求BC邊所在直線的方程;
(2)BC邊上中線AD的方程為2x﹣3y+6=0,且SABC=7,求點A的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,底面是直角梯形, , 平面平面

Ⅰ)求證: 平面

Ⅱ)求平面和平面所成二面角(小于)的大。

Ⅲ)在棱上是否存在點使得平面?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=(1﹣x)|x﹣3|在(﹣∞,a]上取得最小值﹣1,則實數(shù)a的取值范圍是(
A.(﹣∞,2]
B.
C.
D.[2,+∞)

查看答案和解析>>

同步練習冊答案