【題目】(1)為何值時,.①有且僅有一個零點;②有兩個零點且均比-1大;

(2)若函數(shù)有4個零點,求實數(shù)的取值范圍.

【答案】(1) ① m4m=-1②(5,-1)(2) (4,0)

【解析】

試題(1)有且僅有一個零點方程有兩個相等實根Δ=0;②設f(x)的兩個零點分別為,則=-2m,=3m+4.由題意,知

(2)數(shù)形結合,作出g(x)=|4xx2|和h(x)=-a的圖象即可.

試題解析:

(1)①有且僅有一個零點方程有兩個相等實根Δ=0,即4m2-4(3m+4)=0,即m2-3m-4=0,∴m=4或m=-1.

②設f(x)的兩個零點分別為,

=-2m,=3m+4.

由題意,知

∴-5<m<-1.故m的取值范圍為(-5,-1).

(2)令f(x)=0,得|4xx2|+a=0,

則|4xx2|=-a.

g(x)=|4xx2|,

h(x)=-a.

作出g(x),h(x)的圖象.

由圖象可知,當0<-a<4,

時,g(x)與h(x)的圖象有4個交點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓C0 ,動圓C1 .點A1 , A2分別為C0的左右頂點,C1與C0相交于A,B,C,D四點.

(1)求直線AA1與直線A2B交點M的軌跡方程;
(2)設動圓C2 與C0相交于A′,B′,C′,D′四點,其中b<t2<a,t1≠t2 . 若矩形ABCD與矩形A′B′C′D′的面積相等,證明: 為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)滿足,且上為增函數(shù),,則不等式的解集為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用二分法求函數(shù)的一個正零點的近似值(精確度為0.1)時,依次計算得到如下數(shù)據(jù):f1)=–2f1.5)=0.625,f1.25≈–0.984,f1.375≈–0.260,關于下一步的說法正確的是( )

A. 已經達到精確度的要求,可以取1.4作為近似值

B. 已經達到精確度的要求,可以取1.375作為近似值

C. 沒有達到精確度的要求,應該接著計算f1.4375

D. 沒有達到精確度的要求,應該接著計算f1.3125

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)yfx滿足fx+1)=fx+1,求函數(shù)yfx)與yx圖象交點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列有關線性回歸分析的六個命題:

①線性回歸直線必過樣本數(shù)據(jù)的中心點;

②回歸直線就是散點圖中經過樣本數(shù)據(jù)點最多的那條直線;

③當相關性系數(shù)時,兩個變量正相關;

④如果兩個變量的相關性越強,則相關性系數(shù)就越接近于1;

⑤殘差圖中殘差點所在的水平帶狀區(qū)域越寬,則回歸方程的預報精確度越高;

⑥甲、乙兩個模型的分別約為0.88和0.80,則模型乙的擬合效果更好.

其中真命題的個數(shù)為( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設N=2n(n∈N* , n≥2),將N個數(shù)x1 , x2 , …,xN依次放入編號為1,2,…,N的N個位置,得到排列P0=x1x2…xN . 將該排列中分別位于奇數(shù)與偶數(shù)位置的數(shù)取出,并按原順序依次放入對應的前 和后 個位置,得到排列P1=x1x3…xN1x2x4…xN , 將此操作稱為C變換,將P1分成兩段,每段 個數(shù),并對每段作C變換,得到P2 , 當2≤i≤n﹣2時,將Pi分成2i段,每段 個數(shù),并對每段作C變換,得到Pi+1 , 例如,當N=8時,P2=x1x5x3x7x2x6x4x8 , 此時x7位于P2中的第4個位置.
(1)當N=16時,x7位于P2中的第個位置;
(2)當N=2n(n≥8)時,x173位于P4中的第個位置.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,雙曲線 =1(a,b>0)的兩頂點為A1 , A2 , 虛軸兩端點為B1 , B2 , 兩焦點為F1 , F2 . 若以A1A2為直徑的圓內切于菱形F1B1F2B2 , 切點分別為A,B,C,D.則: (Ⅰ)雙曲線的離心率e=;
(Ⅱ)菱形F1B1F2B2的面積S1與矩形ABCD的面積S2的比值 =

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為 (為參數(shù)),直線的參數(shù)方程為 (為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系.

(1)寫出直線的普通方程以及曲線的極坐標方程;

(2)若直線與曲線的兩個交點分別為,直線軸的交點為,求的值.

查看答案和解析>>

同步練習冊答案