【題目】在正方體中,分別是的中點,則( )
A. B. C. 平面 D. 平面
【答案】D
【解析】分析:對于選項A,由條件可得直線MN與平面相交,因為直線在平面內,可得直線MN與直線不可能平行,判斷選項A不對;對于選項B,因為點是的中點,所以要證,只需證。而,所以與不垂直,選項B不對;對于選項C,可用反證法推出矛盾。假設平面,由直線與平面垂直的定義可得。因為是的中點,由等腰三角形的三線合一可得 。這與矛盾。故假設不成立。所以選項C不對;對于選項D,可找與直線MN平行的一條直線,證其垂直于平面。故分別取的中點P、Q,連接PM、QN、PQ?傻盟倪呅為平行四邊形。進而可得。正方體中易得,由直線與平面垂直的判定定理可得平面。進而可得平面。
詳解:對于選項A,因為分別是的中點,所以點平面,點 平面,所以直線MN是平面的交線,
又因為直線在平面內,故直線MN與直線不可能平行,故選項A錯;
對于選項B,正方體中易知 ,因為點是的中點,所以直線 與直線不垂直。故選項B不對;
對于選項C ,假設平面,可得。因為是的中點,
所以 。這與矛盾。故假設不成立。
所以選項C不對;
對于選項D,分別取的中點P、Q,連接PM、QN、PQ。
因為點是的中點,所以且。同理且。
所以且,所以四邊形為平行四邊形。
所以。
在正方體中,
因為 ,平面 ,平面,
所以平面。因為,所以平面。
故選項D正確。
故選D.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|+|x+2|.
(1)當a=1 時,求不等式f(x)≤5的解集;
(2)x0∈R,f(x0)≤|2a+1|,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設p:關于x的不等式ax>1的解集是{x|x<0};q:函數(shù) 的定義域為R.若p∨q是真命題,p∧q是假命題,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場銷售某種品牌的空調器,每周周初購進一定數(shù)量的空調器,商場每銷售一臺空調器可獲利500元,若供大于求,則每臺多余的空調器需交保管費100元;若供不應求,則可從其他商店調劑供應,此時每臺空調器僅獲利潤200元.
(Ⅰ)若該商場周初購進20臺空調器,求當周的利潤(單位:元)關于當周需求量n(單位:臺,n∈N)的函數(shù)解析式f(n);
(Ⅱ)該商場記錄了去年夏天(共10周)空調器需求量n(單位:臺),整理得表:
周需求量n | 18 | 19 | 20 | 21 | 22 |
頻數(shù) | 1 | 2 | 3 | 3 | 1 |
以10周記錄的各需求量的頻率作為各需求量發(fā)生的概率,若商場周初購進20臺空調器,X表示當周的利潤(單位:元),求X的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,l是過定點P(4,2)且傾斜角為α的直線;在極坐標系(以坐標原點O為極點,
以x軸非負半軸為極軸,取相同單位長度)中,曲線C的極坐標方程為.
(1)寫出直線l的參數(shù)方程,并將曲線C的方程化為直角坐標方程;
(2)若曲線C與直線相交于不同的兩點M,N,求|PM|+|PN|的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩個小組各10名學生的英語口語測試成績如下(單位:分).
甲組:76,90,84,86,81,87,86,82,85,83 乙組:82,84,85,89,79,80,91,89,79,74
現(xiàn)從這20名學生中隨機抽取一人,將“抽出的學生為甲組學生”記為事件A;“抽出學生的英語口語測試成績不低于85分”記為事件B,則P(AB)、P(A|B)的值分別是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】是定義在R上的函數(shù),對∈R都有,且當>0時,<0,且=1.
(1)求的值;
(2)求證:為奇函數(shù);
(3)求在[-2,4]上的最值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司計劃在迎春節(jié)聯(lián)歡會中設一項抽獎活動:在一個不透明的口袋中裝入外形一樣號
碼分別為1,2,3,…,10的十個小球。活動者一次從中摸出三個小球,三球號碼有且僅有兩個連號的為三等獎,獎金30元;三球號碼都連號為二等獎,獎金60元;三球號碼分別為1,5,10為一等獎,獎金240元;其余情況無獎金。
(1)求員工甲抽獎一次所得獎金ξ的分布列與期望;
(2)員工乙幸運地先后獲得四次抽獎機會,他得獎次數(shù)的方差是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com