【題目】是定義在R上的函數(shù),對R都有,且當(dāng)0時,<0,=1.

(1)求的值;

(2)求證:為奇函數(shù);

(3)求在[-2,4]上的最值.

【答案】(1) f(0)=0,f(-2)=2; (2)證明見解析;(3)f(x)max=2, f(x)min=-4.

【解析】

試題本題為抽象函數(shù)問題,解決抽象函數(shù)的基本方法有兩種:一是賦值法,二是“打回原型”,本題第一步采用賦值法,先給x,y賦值0,求出f(0),再給x,y賦值-1,求出f(--2);判斷函數(shù)奇偶性,就是尋求f(-x)f(x)的關(guān)系,給y賦值-x,得出f(-x)=-f(x),判斷出函數(shù)的奇偶性;再根據(jù)函數(shù)的奇偶性,得出函數(shù)圖像的對稱性,再利用賦值法判斷函數(shù)的單調(diào)性,根據(jù)函數(shù)的奇偶性和單調(diào)性求出函數(shù)的最值.

試題解析:

(1)f(x)的定義域為R,

xy=0,則f(0)=f(0)+f(0),

f(0)=0,

f(-1)=1,

f(-2)=f(-1)+f(-1)=2,

(2)令y=-x,則f(xx)=f(x)+f(-x),

f(-x)+f(x)=f(0)=0,

f(-x)=-f(x),

f(x)是奇函數(shù).

(3)設(shè)x2>x1,

f(x2)-f(x1)=f(x2)+f(-x1)=f(x2x1)

x2x1>0,∴f(x2x1)<0,

f(x2)-f(x1)<0,

f(x2)<f(x1),

f(x)在R上為減函數(shù).

f(2)=-f(-2)=-2,

f(4)=f(2)+f(2)=-4,

f(x)在[-2,4]上為減函數(shù),

f(x)maxf(-2)=2,

f(x)minf(4)=-4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知各項都是正數(shù)的數(shù)列{an}的前n項和為Sn , Sn=an2+ an , n∈N*
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}滿足:b1=1,bn﹣bn1=2an(n≥2),求數(shù)列{ }的前n項和Tn
(3)若Tn≤λ(n+4)對任意n∈N*恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) 的定義域是R,對于任意實數(shù) ,恒有,且當(dāng) 時, 。

1求證: ,且當(dāng) 時,有 ;

2判斷 R上的單調(diào)性;

3設(shè)集合A,B,若A∩B,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)f(x)= sin2x﹣ cos2x+1的圖象向左平移 個單位,再向下平移1個單位,得到函數(shù)y=g(x)的圖象,則下列關(guān)予函數(shù)y=g(x)的說法錯誤的是(
A.函數(shù)y=g(x)的最小正周期為π
B.函數(shù)y=g(x)的圖象的一條對稱軸為直線x=
C. g(x)dx=
D.函數(shù)y=g(x)在區(qū)間[ , ]上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有3名男生、4名女生,在下列不同條件下,求不同的排列方法總數(shù).

(1)排成前后兩排,前排3人,后排4人;(2)全體站成一排,甲不站排頭也不站排尾;

(3)全體站成一排,女生必須站在一起;(4)全體站成一排,男生互不相鄰.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若某一等差數(shù)列的首項為,公差為展開式中的常數(shù)項,其中除以19的余數(shù),則此數(shù)列前多少項的和最大?并求出這個最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|2x﹣1|﹣2|x﹣1|.
(1)作出函數(shù)f(x)的圖象;
(2)若不等式 ≤f(x)有解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=9x﹣2a3x+3:

(1)若a=1,x[0,1]時,求fx)的值域;

(2)當(dāng)x[﹣1,1]時,求fx)的最小值ha);

(3)是否存在實數(shù)m、n,同時滿足下列條件:①n>m>3;②當(dāng)h(a)的定義域為[m,n]時,其值域為[m2,n2],若存在,求出m、n的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=﹣3x2+a(6﹣a)x+6.
(Ⅰ)解關(guān)于a的不等式f(1)>0;
(Ⅱ)若不等式f(x)>b的解集為(﹣1,3),求實數(shù)a,b的值.

查看答案和解析>>

同步練習(xí)冊答案