如圖,在⊙O中,P是弦AB上一點,OP⊥PC,PC交⊙O于C,求證:PC2=PA·PB.

答案:
解析:

  證明:延長CP交⊙O于D,則CP·PD=AP·PB.

  又因為OP⊥PC,所以PD=PC.所以PC2=PA·PB.

  分析:由AP·PB聯(lián)想到相交弦定理,于是想到延長CP交⊙O于D,于是由PC·PD=PA·PB,又根據(jù)條件OP⊥PC,易證得PC=PD.問題得證.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)在平面向量中有如下定理:設點O、P、Q、R為同一平面內的點,則P、Q、R三點共線的充要條件是:存在實數(shù)t,使
OP
=(1-t)
OQ
+t
OR
.試利用該定理解答下列問題:
如圖,在△ABC中,點E為AB邊的中點,點F在AC邊上,且CF=2FA,BF交CE于點M,設
AM
=x
AE
+y
AF
,則x+2y=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選考題
請從下列三道題當中任選一題作答,如果多做,則按所做的第一題計分,請在答題卷上注明題號.
22-1設函數(shù)f(x)=|2x-1|+|2x-3|
(1)解不等式f(x)≤5x+1;
(2)若g(x)=
1
f(x)+m
定義域為R,求實數(shù)m的取值范圍.
22-2如圖,在△ABC中,CD是∠ACB的角平分線,△ACD的外接圓交BC于E,AB=2AC,
(1)求證:BE=2AD;
(2)當AC=1,BC=2時,求AD的長.
22-3已知P為半圓C:
x=cosθ
y=sinθ
(θ為參數(shù),0≤θ≤π)
上的點,點A的坐標為(1,0),O為坐標原點,點M在射線OP上,線段OM與半圓C上的弧AP的長度均為
π
3

(1)求以O為極點,x軸的正半軸為極軸建立極坐標系,求點M的極坐標;
(2)求直線AM的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)請考生在第(1),(2),(3)題中任選一題作答,如果多做,則按所做的第一題記分.
(1)選修4-1:幾何證明選講
如圖,在△ABC中,D是AC的中點,E是BD的中點,AE的延長線交BC于F.
(Ⅰ)求
BF
FC
的值;
(Ⅱ)若△BEF的面積為S1,四邊形CDEF的面積為S2,求S1:S2的值.
(2)選修4-4:坐標系與參數(shù)方程
以直角坐標系的原點O為極點,a=
π
6
軸的正半軸為極軸,且兩個坐標系取相等的單位長度.已知直線l經(jīng)過點P(1,1),傾斜角a=
π
6

( I)寫出直線l的參數(shù)方程;
( II)設l與圓ρ=2相交于兩點A、B,求點P到A、B兩點的距離之積.
(3)選修4-5:不等式選講
已知函數(shù)f(x)=|2x+1|+|2x-3|.
(I)求不等式f(x)≤6的解集;
(II)若關于x的不等式f(x)>a恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年甘肅省蘭州一中高三(上)12月月考數(shù)學試卷(理科)(解析版) 題型:解答題

選考題
請從下列三道題當中任選一題作答,如果多做,則按所做的第一題計分,請在答題卷上注明題號.
22-1設函數(shù)f(x)=|2x-1|+|2x-3|
(1)解不等式f(x)≤5x+1;
(2)若定義域為R,求實數(shù)m的取值范圍.
22-2如圖,在△ABC中,CD是∠ACB的角平分線,△ACD的外接圓交BC于E,AB=2AC,
(1)求證:BE=2AD;
(2)當AC=1,BC=2時,求AD的長.
22-3已知P為半圓上的點,點A的坐標為(1,0),O為坐標原點,點M在射線OP上,線段OM與半圓C上的弧AP的長度均為
(1)求以O為極點,x軸的正半軸為極軸建立極坐標系,求點M的極坐標;
(2)求直線AM的參數(shù)方程.

查看答案和解析>>

同步練習冊答案