18.已知函數(shù)y=|sin2x-4sinx-a|的最大值為4,則常數(shù)a=1.

分析 令t=sinx(-1≤t≤1),可得y=|t2-4t-a|=|(t-2)2-4-a|,可令f(t)=(t-2)2-4-a,(-1≤t≤1),求出f(t)的最值,討論最值的符號,即可得到所求最大值,解方程即可判斷a的值.

解答 解:令t=sinx(-1≤t≤1),
可得y=|t2-4t-a|=|(t-2)2-4-a|,
可令f(t)=(t-2)2-4-a,(-1≤t≤1),
可得f(t)在[-1,1]遞減,
即有f(t)的最大值為f(-1)=5-a,
最小值為f(1)=-3-a,
若-3-a≥0,即a≤-3,
由題意可得5-a=4,解得a=1,不成立;
若-3-a<0,即a>-3,
再若5-a>0即a<5,即有-3<a<5,
由題意可得a+3=4或5-a=4,解得a=1成立;
再若5-a≤0,即有a≥5,
由題意可得a+3=4,解得a=1,不成立.
綜上可得a=1.
故答案為:1.

點評 本題考查已知函數(shù)的最值,求參數(shù),注意運用換元法,以及正弦函數(shù)的值域,考查分類討論思想方法,以及運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)(x1,y1),(x2,y2),…,(xn,yn)是變量x和y的n個樣本點,直線l是由這些樣本點通過最小二乘法得到的線性回歸直線(如圖),以下結(jié)論中正確的是( 。
A.x和y的相關(guān)系數(shù)在-1和0之間
B.x和y的相關(guān)系數(shù)為直線l的斜率
C.當(dāng)n為偶數(shù)時,分布在l兩側(cè)的樣本點的個數(shù)一定相同
D.所有樣本點(xi,yi)(i=1,2,…,n)都在直線l上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下面幾種推理是合情推理的是( 。
①由圓的性質(zhì)類比出球的有關(guān)性質(zhì)
②由直角三角形、等腰三角形、等邊三角形內(nèi)角和是180°歸納出所有三角形的內(nèi)角和都是180°
③某次考試張軍成績是100分,由此推出全班同學(xué)成績都是100分
④數(shù)列1,0,1,0,…,推測出每項公式an=$\frac{1}{2}$+(-1)n+1•$\frac{1}{2}$.
A.①②B.①③④C.①②④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若△ABC的內(nèi)角A,B,C滿足$\frac{sinA}{2}$=$\frac{sinB}{4}$=$\frac{sinC}{3}$,則cosB=( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.-$\frac{1}{2}$D.-$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.將函數(shù)f(x)=$\sqrt{-{x}^{2}+2x+3}$-$\sqrt{3}$(x∈[0,2])的圖象繞坐標(biāo)原點逆時針旋轉(zhuǎn)θ (θ為銳角),若所得曲線仍是函數(shù)的圖象,則θ的最大值為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}滿足a1=1,an+1=$\frac{{a}_{n}}{{{a}_{n}}^{2}+1}$.
(Ⅰ)求證:an+1<an;
(Ⅱ)求證:$\frac{1}{{2}^{n-1}}$≤an≤$\frac{{2}^{n}}{3•{2}^{n}-4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x-y≥2}\\{ax+y≤4}\\{y≥-1}\end{array}\right.$,目標(biāo)函數(shù)z=3x+y,若a=1,則z的最小值為2;若z的最大值為5,則實數(shù)a=$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知某空間幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{40}{3}$B.$\frac{34}{3}$C.$10+\frac{{4\sqrt{2}}}{3}$D.$6+\frac{{4\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{(x+1)(x+a)}{{x}^{2}}$為偶函數(shù).
(1)求實數(shù)a的值;
(2)記集合E={y|y=f(x),x∈{-1,1,2}},λ=(lg 2)2+lg 2lg 5+lg 5-$\frac{1}{4}$,判斷λ與E的關(guān)系;
(3)當(dāng)x∈[$\frac{1}{m}$,$\frac{1}{n}$](m>0,n>0)時,若函數(shù)f(x)的值域為[2-3m,2-3n],求m,n的值.

查看答案和解析>>

同步練習(xí)冊答案