分析 由已知得到?7=1,1+?+?2+…+?6=0,利用這兩個性質對所求通分化簡求值.
解答 解:?是1的一個7次虛單位根,所以?7=1,1+?+?2+…+?6=0,
所以,原式=$\frac{?(1+{?}^{4})(1+{?}^{6})+{?}^{2}(1+{?}^{2})(1+{?}^{6})}{(1+{?}^{2})(1+{?}^{4})(1+{?}^{6})}$+$\frac{{?}^{3}(1+{?}^{2})(1+{?}^{4})}{(1+{?}^{2})(1+{?}^{4})(1+{?}^{6})}$
=$\frac{?+1+{?}^{5}+{?}^{4}+{?}^{2}+?+{?}^{4}+{?}^{3}+{?}^{3}+1+{?}^{5}+{?}^{2}}{1+{?}^{4}+{?}^{2}+{?}^{6}+{?}^{6}+{?}^{3}+?+{?}^{5}}$
=$\frac{2(1+?+{?}^{2}+…+{?}^{5})}{(1+?+{?}^{2}+…+{?}^{6})}$=$\frac{2(0-{?}^{6})}{{?}^{6}}$
=-2.
故答案為:-2.
點評 本題考查了與復數(shù)的運算類似的虛數(shù)單位的運算性質;關鍵是明確?7=1,1+?+?2+…+?6=0.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|0<x<2} | B. | {x|x≤1或x≥2} | C. | {x|0≤x≤1或x≥2} | D. | {x|0<x≤1或x≥2} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com