精英家教網 > 高中數學 > 題目詳情

【題目】已知函數的極小值為.

(1)求的單調區(qū)間;

(2)證明:(其中為自然對數的底數).

【答案】(1)單調遞減區(qū)間為,單調遞增區(qū)間為(2)詳見解析

【解析】

(1)先由函數的極小值為,求出,利用導數的應用,求函數單調區(qū)間即可;

(2)不等式恒成立問題,通常采用最值法,方法一,令,可以證明,方法二,要證,即證,再構造函數證明即可得解.

(1)由題得的定義域為,

,

,解得,

時,,單調遞減;

時,,單調遞增.

所以的單調遞減區(qū)間為,單調遞增區(qū)間為.

(2)方法一:要證,即證,

,則,

,單調遞增;

時,,單調遞減.

所以.

由題知.

因為

所以,即.

方法二:由(1)知.

解得,要證,即證.

時,易知.

,則.

時,單調遞減;

時,,單調遞增.

所以,即.

,則

所以在區(qū)間內單調遞增,

所以,即,

所以

則當時,

所以.

綜上,.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】若對于定義在上的函數,其圖象是連續(xù)不斷的,且存在常數使得對任意實數都成立,則稱是一個“特征函數”.下列結論中正確的個數為(  )

是常數函數中唯一的“特征函數”;

不是“特征函數”;

③“特征函數”至少有一個零點;

是一個“特征函數”.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給出下列說法:

1)命題、都是奇數,則是偶數的否命題是、都不是奇數,則不是偶數

2)命題如果,那么是真命題;

3的必要不充分條件.

那么其中正確的說法有( )

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】黃金分割起源于公元前世紀古希臘的畢達哥拉斯學派,公元前世紀,古希臘數學家歐多克索斯第一個系統(tǒng)研究了這一問題,公元前年前后歐幾里得撰寫《幾何原本》時吸收了歐多克索斯的研究成果,進一步系統(tǒng)論述了黃金分割,成為最早的有關黃金分割的論著.黃金分割是指將整體一分為二,較大部分與整體部分的比值等于較小部分與較大部分的比值,其比值為,把稱為黃金分割數. 已知雙曲線的實軸長與焦距的比值恰好是黃金分割數,則的值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,若關于的方程有兩個不同的實數根,則實數的取值范圍為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】以平面直角坐標系的原點為極點,軸的正半軸為極軸,建立極坐標系,已知直線的參數方程是 (m>0,t為參數),曲線的極坐標方程為

(1)求直線的普通方程和曲線的直角坐標方程;

(2)若直線軸交于點,與曲線交于點,且,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(Ⅰ)若,解不等式

(Ⅱ)若不等式至少有一個負數解,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某中學每年暑假舉行“學科思維講座”活動每場講座結束時,所有聽講者都要填寫一份問卷調查.2017年暑假某一天五場講座收到的問卷分數情況如下表:

用分層抽樣的方法從這一天的所有問卷中抽取300份進行統(tǒng)計,結果如下表:

(1)估計這次講座活動的總體滿意率;

(2)求聽數學講座的甲某的調查問卷被選中的概率;

(3)若想從調查問卷被選中且填寫不滿意的人中再隨機選出5人進行家訪求這5人中選擇的是理綜講座的人數的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某單位決定投資3200元建一倉庫(長方體狀),高度恒定,它的后墻利用舊墻不花錢,正面用鐵柵,每米長造價40元,兩側墻砌磚,每米長造價45元,頂部每平方米造價20元,求:

1)倉庫頂部面積的最大允許值是多少?

2)為使達到最大,而實際投資又不超過預算,那么正面鐵柵應設計為多長?

查看答案和解析>>

同步練習冊答案