已知P(x0,y0)是函數(shù)f(x)=lnx圖象上一點(diǎn),在點(diǎn)P處的切線l與x軸交于點(diǎn)B,過點(diǎn)P作x軸的垂線,垂足為A.
(1)求切線l的方程及點(diǎn)B的坐標(biāo);
(2)若x0∈(0,1),求△PAB的面積S的最大值,并求此時(shí)x0的值.
(1)∵f'(x)=
1
x
,…(2分)
∴過點(diǎn)P的切線方程為y-lnx0=
1
x0
(x-x0
即切線方程為:y=
1
x0
x+lnx0-1…(4分)
令y=0,得x=x0-x0lnx0,
即點(diǎn)B的坐標(biāo)為(x0-x0lnx0,0)…(6分)
(2)AB=x0-x0lnx0-x0=-x0lnx0,PA=|f(x0)|=-lnx0
∴S=
1
2
AB•PA=
1
2
x0(lnx02…(9分)
S′=
1
2
ln2x0+
1
2
x02lnx0
1
x0
=
1
2
lnx0(lnx0+2)…(11分)
由S′<0得,
1
e2
<x<1,
∴x∈(0,
1
e2
)時(shí),S單調(diào)遞增;x∈(
1
e2
,1)時(shí)S單調(diào)遞減;…(13分)
∴Smax=S(
1
e2
)=
2
e2

∴當(dāng)x0=
1
e2
,面積S的最大值為
2
e2
.…(14分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

①已知P(x0,y0)是直線l:f(x,y)=0外一點(diǎn),則直線f(x,y)+f(x0,y0)=0與直線l的位置關(guān)系是
 
;
②設(shè)a、b、c分別是△ABC中角A、B、C的對邊,則直線:xsinA+ay+c=0與直線bx-ysinB+sinC=0的位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P(x0,y0)是拋物線y2=2px(p>0)上的一點(diǎn),過P點(diǎn)的切線方程的斜率可通過如下方式求得:
在y2=2px兩邊同時(shí)對x求導(dǎo),得:2yy′=2p,則y′=
p
y
,所以過P的切線的斜率:k=
p
y0
試用上述方法求出雙曲線x2-
y2
2
=1
P(
2
,
2
)
處的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P(x0,y0)是圓C:x2+(y-4)2=1外一點(diǎn),過P作圓C的切線,切點(diǎn)為A、B,記:四邊形PACB的面積為f(P)
(1)當(dāng)P點(diǎn)坐標(biāo)為(1,1)時(shí),求f(P)的值;
(2)當(dāng)P(x0,y0)在直線3x+4y-6=0上運(yùn)動(dòng)時(shí),求f(P)最小值;
(3)當(dāng)P(x0,y0)在圓(x+4)2+(y-1)2=4上運(yùn)動(dòng)時(shí),指出f(P)的取值范圍(可以直接寫出你的結(jié)果,不必詳細(xì)說理);
(4)當(dāng)P(x0,y0)在橢圓
x24
+y2=1上運(yùn)動(dòng)時(shí)f(P)=5是否能成立?若能求出P點(diǎn)坐標(biāo),若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•開封一模)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的上項(xiàng)點(diǎn)為B1,右、右焦點(diǎn)為F1、F2,△B1F1F2是面積為
3
的等邊三角形.
(I)求橢圓C的方程;
(II)已知P(x0,y0)是以線段F1F2為直徑的圓上一點(diǎn),且x0>0,y0>0,求過P點(diǎn)與該圓相切的直線l的方程;
(III)若直線l與橢圓交于A、B兩點(diǎn),設(shè)△AF1F2,△BF1F2的重心分別為G、H,請問原點(diǎn)O在以線段GH為直徑的圓內(nèi)嗎?若在請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P(x0,y0)是直線x+y-6=0上的動(dòng)點(diǎn),若圓D:(x-1)2+(y-1)2=4存在兩點(diǎn)B、C,使∠BPC=60°,則x0的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案