14.若復(fù)數(shù)$z=\frac{m+2i}{1+i}$(i為虛數(shù)單位,m∈R)的實(shí)部為-1,則m=( 。
A.0B.1C.-4D.-2

分析 利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),由實(shí)部等于-1列式求得m值.

解答 解:∵$z=\frac{m+2i}{1+i}$=$\frac{(m+2i)(1-i)}{(1+i)(1-i)}=\frac{(2+m)+(2-m)i}{2}$的實(shí)部為-1,
∴$\frac{2+m}{2}=-1$,即m=-4.
故選:C.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.一個(gè)盒子內(nèi)裝有8張卡片,每張卡片上面寫著1個(gè)數(shù)字,這8個(gè)數(shù)字各不相同,且奇數(shù)有3個(gè),偶數(shù)有5個(gè),每張卡片被取出的概率相等.
(Ⅰ)如果從盒子中一次隨機(jī)取出2張卡片,并且將取出的2張卡片上的數(shù)字相加得到一個(gè)新數(shù),求所得新數(shù)是偶數(shù)的概率;
(Ⅱ)現(xiàn)從盒子中一次隨機(jī)取出1張卡片,每次取出的卡片都不放回盒子,若取出的卡片上寫著的數(shù)是偶數(shù)則停止取出卡片,否則繼續(xù)取出卡片,設(shè)取出了ξ次才停止取出卡片,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.拋物線y2=mx(m<0)的焦點(diǎn)與雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1的一個(gè)焦點(diǎn)重合,則m=-12,拋物線的準(zhǔn)線方程為x=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y≥0}\\{y-3x+1≥0}\end{array}\right.$,則z=x+2y的最小值是( 。
A.-3B.$\frac{3}{2}$C.-$\frac{1}{4}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.要得到函數(shù)y=sinx的圖象,只需將函數(shù)y=sin(2x+$\frac{π}{4}$)的圖象上所有點(diǎn)的( 。
A.橫坐標(biāo)縮短到原來(lái)的$\frac{1}{2}$倍(縱坐標(biāo)不變),再向左平行移動(dòng)$\frac{π}{8}$個(gè)單位長(zhǎng)度
B.橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再向左平行移動(dòng)$\frac{π}{4}$個(gè)單位長(zhǎng)度
C.橫坐標(biāo)縮短到原來(lái)的$\frac{1}{2}$倍(縱坐標(biāo)不變),再向右平行移動(dòng)$\frac{π}{4}$個(gè)單位長(zhǎng)度
D.橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再向右平行移動(dòng)$\frac{π}{4}$個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.集合A={x|x2-3x-10≤0},集合B={x|m+2≤x≤2m-1}.
(Ι) 若B⊆A,求實(shí)數(shù)m的取值范圍;
(ΙΙ) 當(dāng)x∈R時(shí),沒(méi)有元素x使x∈A與x∈B同時(shí)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.對(duì)具有線性相關(guān)關(guān)系的變量x,y有一組觀測(cè)數(shù)據(jù)(xi,yi)(i=1,2,…,8),其回歸直線方程是$\hat y=\frac{1}{2}x+a$且x1+x2+…+x8=2,y1+y2+…+y8=5,則實(shí)數(shù)a是( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{8}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若復(fù)平面上的點(diǎn)A、B分別表示復(fù)數(shù)1和i,線段AB的中點(diǎn)所對(duì)應(yīng)的復(fù)數(shù)為z,則|z|=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.執(zhí)行如圖所示的算法框圖,如果輸出的函數(shù)值在區(qū)間[$\frac{1}{2}$,2)內(nèi),則輸入的實(shí)數(shù)x的取值范圍是[-1,1).

查看答案和解析>>

同步練習(xí)冊(cè)答案