設(shè)曲線y=x2與直線2x-y-a=0相切,則a=
1
1
分析:把直線方程與拋物線方程聯(lián)立化為關(guān)于x的一元二次方程,利用相切?△=0即可解出.
解答:解:聯(lián)立
2x-y-a=0
y=x2
,化為x2-2x+a=0,
∵曲線y=x2與直線2x-y-a=0相切,∴△=0,即4-4a=0,解得a=1.
故答案為1.
點(diǎn)評:本題考查了直線與拋物線相切轉(zhuǎn)化為一元二次方程有相等實(shí)數(shù)根的問題,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)曲線y=x2在點(diǎn)(
1
2
,
1
4
)
處的切線與直線x+ay+1=0垂直,則a=(  )
A、2B、1C、-1D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex,x∈R.
(Ⅰ) 若直線y=kx+1與f(x)的反函數(shù)的圖象相切,求實(shí)數(shù)k的值;
(Ⅱ) 設(shè)x>0,討論曲線y=
f(x)
x2
與直線y=m(m>0)公共點(diǎn)的個數(shù);
(Ⅲ) 設(shè)a<b,比較
f(a)+f(b)
2
f(b)-f(a)
b-a
的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+2lnx(a∈R),設(shè)曲線y=f(x)在點(diǎn)(1,f(1))處的切線為l,
(1)求直線l的方程;
(2)若直線l與圓C:x2+y2=1相切,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(
x
+
2
)2(x>0)
,設(shè)正項(xiàng)數(shù)列an的首項(xiàng)a1=2,前n 項(xiàng)和Sn滿足Sn=f(Sn-1)(n>1,且n∈N*).
(1)求an的表達(dá)式;
(2)在平面直角坐標(biāo)系內(nèi),直線ln的斜率為an,且ln與曲線y=x2相切,ln又與y軸交于點(diǎn)Dn(0,bn),當(dāng)n∈N*時,記dn=
1
4
|
Dn+1Dn
|-1
,若Cn=
d
2
n+1
+
d
2
n
2dn+1dn
,設(shè)Tn=C1+C2+C3+…+Cn,求
lim
n→∞
n
Tn

查看答案和解析>>

同步練習(xí)冊答案