已知函數(shù)f(x)=ex,x∈R.
(Ⅰ) 若直線y=kx+1與f(x)的反函數(shù)的圖象相切,求實(shí)數(shù)k的值;
(Ⅱ) 設(shè)x>0,討論曲線y=
f(x)
x2
與直線y=m(m>0)公共點(diǎn)的個(gè)數(shù);
(Ⅲ) 設(shè)a<b,比較
f(a)+f(b)
2
,
f(b)-f(a)
b-a
的大小,并說(shuō)明理由.
分析:(Ⅰ) 求出函數(shù)的反函數(shù),利用直線y=kx+1與f(x)的反函數(shù)的圖象相切,求實(shí)數(shù)k的值;
(Ⅱ) 利用導(dǎo)數(shù)求函數(shù)的最值,利用最值討論曲線y=
f(x)
x2
與直線y=m(m>0)公共點(diǎn)的個(gè)數(shù);
(Ⅲ)利用作差法比較兩個(gè)數(shù)的大。
解答:解:(Ⅰ) 函數(shù)f(x)的反函數(shù)為g(x)=lnx,設(shè)y=kx+1與g(x)相切于點(diǎn)P(x0,y0),
kx0+1=lnx0
k=g′(x0)=
1
x0
,解得x0=e2,k=e-2,所以k=e-2
(Ⅱ)當(dāng)x>0,m>0時(shí),曲線y=
f(x)
x2
與直線y=m(m>0)公共點(diǎn)的個(gè)數(shù),即f(x)=mx2根的個(gè)數(shù).
即m=
ex
x2
,令h(x)=
ex
x2
,則h'(x)=
ex(x-2)
x3
,
當(dāng)0<x<2時(shí),h'(x)<0,此時(shí)函數(shù)單調(diào)遞減,
當(dāng)x>2時(shí),h'(x)>0,此時(shí)函數(shù)單調(diào)遞增,所以當(dāng)x=2時(shí),函數(shù)h(x)取得極小值同時(shí)也是最小值h(2)=
e2
4

當(dāng)0<m<
e2
4
.時(shí),有0個(gè)公共點(diǎn),
當(dāng)m=
e2
4
時(shí),有1個(gè)公共點(diǎn),
當(dāng)m>
e2
4
時(shí),有2個(gè)公共點(diǎn).
(Ⅲ)設(shè)
f(a)+f(b)
2
-
f(b)-f(a)
b-a
=
(b-a+2)f(a)+(b-a-2)f(b)
2(b-a)
=
(b-a+2)ea+(b-a-2)eb
2(b-a)
=
(b-a+2)+(b-a-2)eb-a
2(b-a)
ea
,
令g(x)=x+2+(x-2)ex,x>0,則g'(x)=1+(1+x-2)ex=1+(x-1)ex,
函數(shù)g'(x)的導(dǎo)函數(shù)[g'(x)]'=(1+x-1)ex=xex>0,
所以g'(x)在(0,+∞)上單調(diào)遞增,且g'(0)=0,
因此g'(x)>0,
所以g(x)在(0,+∞)上單調(diào)遞增,且g(0)=0,
所以在(0,+∞)上,g(x)>0,
因?yàn)楫?dāng)x>0時(shí),g(x)=x+2+(x-2)ex>0,且a<b,
所以
(b-a+2)+(b-a-2)eb-a
2(b-a)
ea
>0,
即當(dāng)a<b,
f(a)+f(b)
2
f(b)-f(a)
b-a
點(diǎn)評(píng):本題主要考查利用導(dǎo)數(shù)研究函數(shù)的性質(zhì),以及利用導(dǎo)數(shù)證明不等式,綜合性較強(qiáng),運(yùn)算量較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=e-x(cosx+sinx),將滿足f′(x)=0的所有正數(shù)x從小到大排成數(shù)列{xn}.求證:數(shù)列{f(xn)}為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•西城區(qū)二模)已知函數(shù)f(x)=e|x|+|x|.若關(guān)于x的方程f(x)=k有兩個(gè)不同的實(shí)根,則實(shí)數(shù)k的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•菏澤一模)已知函數(shù)f(x)=e|lnx|-|x-
1
x
|,則函數(shù)y=f(x+1)的大致圖象為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=e-xsinx(其中e=2.718…).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)求f(x)在[-π,+∞)上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=e-x(x2+x+1).
(Ⅰ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)求函數(shù)f(x)在[-1,1]上的最值.

查看答案和解析>>

同步練習(xí)冊(cè)答案