分析 先化簡(jiǎn)f(x)=[x]•{x}=[x]•(x-[x])=[x]x-[x]2,再化簡(jiǎn)f(x)<g(x),再分類討論:①當(dāng)x∈[0,1)時(shí),②當(dāng)x∈[1,2)時(shí)③當(dāng)x∈[2,3)時(shí),從而得出f(x)<g(x)在0≤x≤k時(shí)的解集的長(zhǎng)度,依題意即可求得k的值.
解答 解:f(x)=[x]•{x}=[x]•(x-[x])=[x]x-[x]2,g(x)=x-1,
f(x)<g(x)⇒[x]x-[x]2<x-1即([x]-1)x<[x]2-1,
當(dāng)x∈[0,1)時(shí),[x]=0,上式可化為x>1,
∴x∈∅;
當(dāng)x∈[1,2)時(shí),[x]=1,上式可化為0>0,
∴x∈∅;
當(dāng)x∈[2,3)時(shí),[x]=2,[x]-1>0,上式可化為x<[x]+1=3,
∴當(dāng)x∈[0,3)時(shí),不等式f(x)<g(x)解集區(qū)間的長(zhǎng)度為d=3-2=1;
同理可得,當(dāng)x∈[3,4)時(shí),不等式f(x)<g(x)解集區(qū)間的長(zhǎng)度為d=4-2=2;
∵不等式f(x)<g(x)解集區(qū)間的長(zhǎng)度為5,
∴k-2=5,
∴k=7.
故答案為:7.
點(diǎn)評(píng) 本題主要考查了抽象函數(shù)及其應(yīng)用,同時(shí)考查了創(chuàng)新能力,以及分類討論的思想和轉(zhuǎn)化思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 36πcm2 | B. | 25πcm2 | C. | 16πcm2 | D. | 9πcm2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=x+1,g(x)=$\frac{x^2}{x}$-1 | B. | f(x)=|x|,g(x)=($\sqrt{x}$)2 | ||
C. | f(x)=2log2x,g(x)=log2x2 | D. | f(x)=x,g(x)=log22x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①②③④ | B. | ①④ | C. | ②③ | D. | ③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com