【題目】某初級中學(xué)有三個(gè)年級,各年級男、女生人數(shù)如下表:
初一年級 | 初二年級 | 初三年級 | |
女生 | 370 | z | 200 |
男生 | 380 | 370 | 300 |
已知在全校學(xué)生中隨機(jī)抽取1名,抽到初二年級女生的概率是0.19.
(1)求z的值;
(2)用分層抽樣的方法在初三年級中抽取一個(gè)容量為5的樣本,將該樣本看成一個(gè)總體,從中任選2名學(xué)生,求至少有1名女生的概率;
(3)用隨機(jī)抽樣的方法從初二年級女生中選出8人,測量它們的左眼視力,結(jié)果如下:1.2, 1.5, 1.2, 1.5, 1.5, 1.3, 1.0, 1.2.把這8人的左眼視力看作一個(gè)總體,從中任取一個(gè)數(shù),求該數(shù)與樣本平均數(shù)之差的絕對值不超過0.1的概率.
【答案】(1)(2)(3)
【解析】
試題分析:
(1)先根據(jù)抽到初二年級女生的概率是0.19,即可求出值,
(2)本題是一個(gè)古典概型,試驗(yàn)發(fā)生包含的事件可以列舉出所有,共有10種結(jié)果,滿足條件的事件是至少有1名女生的基本事件有7個(gè),根據(jù)概率公式得到結(jié)果.
(3)首先做出樣本平均數(shù),把數(shù)據(jù)進(jìn)行比較與樣本平均數(shù)之差的絕對值不超過0.1的數(shù)有4個(gè)數(shù),總的個(gè)數(shù)為8,得到概率.
試題解析:
(1),
(2)設(shè)所抽樣本中有m個(gè)女生,因?yàn)橛梅謱映闃拥姆椒ㄔ诔跞昙壷谐槿∫粋(gè)容量為5的樣本,
所以,解得m=2也就是抽取了2名女生,3名男生,
分別記作
則從中任取2人的所有基本事件為,,,,
,,,,共10個(gè),
其中至少有1名女生的基本事件有7個(gè):,,,
,,,,
從中任取2人,至少有1名女生的概率為.
(3)樣本的平均數(shù)為
那么與樣本平均數(shù)之差的絕對值不超過0.1的數(shù)為1.2,1.2,1.3,1.2.這4個(gè)數(shù),總的個(gè)數(shù)為8,
該數(shù)與樣本平均數(shù)之差的約對值不超過0.1的概率為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高二(1)班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如下,且將全班25人的成績記為由右邊的程序運(yùn)行后,輸出.據(jù)此解答如下問題:
(Ⅰ)求莖葉圖中破損處分?jǐn)?shù)在[50,60),[70,80),[80,90)各區(qū)間段的頻數(shù);
(Ⅱ)利用頻率分布直方圖估計(jì)該班的數(shù)學(xué)測試成績的眾數(shù),中位數(shù)分別是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(A)已知, , ,且函數(shù)的最小正周期為.
(1)求的值;
(2)若, , , ,求的值.
(B)已知, , ,且函數(shù)的最小正周期為.
(1)求的解析式;
(2)若關(guān)于的方程,在內(nèi)有兩個(gè)不同的解, ,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國象棋中規(guī)定:馬走“日”字,象走“田”字.如下圖,在中國象棋的半個(gè)棋盤(的矩形中每個(gè)小方格都是單位正方形)中,若馬在處,可跳到處,也可跳到處,用向量,表示馬走了“一步”.通過探究,你能在圖中畫出馬在處走了一步的所有情況嗎?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是公差為正數(shù)的等差數(shù)列,其前項(xiàng)和為,且,.
(1)求數(shù)列的通項(xiàng)公式;
(2)數(shù)列滿足,.
①求數(shù)列的通項(xiàng)公式;
②是否存在正整數(shù),使得成等差數(shù)列?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在處取得極值.
(1)求的值;
(2)若對任意的,都有成立(其中是函數(shù)的導(dǎo)函數(shù)),求實(shí)數(shù)的最小值;
(3)證明:().
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列中,,且對任意的成等比數(shù)列,其公比為.
(1)若,求;
(2)若對任意的成等差數(shù)列,其公差為.設(shè).
①求證:成等差數(shù)列并指出其公差;
②若,試求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—5:不等式選講
已知函數(shù)f(x)=|2x-a|+a.
(1)若不等式f(x)≤6的解集為{x|-2≤x≤3},求實(shí)數(shù)a的值;
(2)在(1)的條件下,若存在實(shí)數(shù)n使f(n)≤m-f(-n)成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列問題中符合調(diào)查問卷要求的是( )
A.你們單位有幾個(gè)高個(gè)子?
B.您對我們廠生產(chǎn)的電視機(jī)滿意嗎?
C.您的體重是多少千克?
D.很多顧客都認(rèn)為該產(chǎn)品的質(zhì)量很好,您不這么認(rèn)為嗎?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com