分析 (1)由雙曲線$\frac{y^2}{3}$-x2=1,能求出雙曲線的實軸,虛軸長及漸近線方程.
(2)求出橢圓C的焦點坐標為F1(0,-$\sqrt{3}$),F(xiàn)2(0,$\sqrt{3}$),a′=2,由此能求出橢圓C的標準方程.
(3)把直線y=x+m代入橢圓方程${x}^{2}+\frac{{y}^{2}}{4}$=1,得到5x2+2mx+m2-4=0,由直線與橢圓有C公共點,利用根的判別式能求出結果.
解答 解:(1)∵雙曲線$\frac{y^2}{3}$-x2=1,
∴$a=\sqrt{3}$,b=1,c=2,
∴雙曲線的實軸長2a=2$\sqrt{3}$,虛軸長2b=2,
由$\frac{y^2}{3}$-x2=0,得雙曲線的漸近線方程為y=$±\sqrt{3}x$.
(2)∵橢圓C的焦點與雙曲線$\frac{y^2}{3}$-x2=1的頂點重合,橢圓C的長軸長為4,
∴橢圓C的焦點坐標為F1(0,-$\sqrt{3}$),F(xiàn)2(0,$\sqrt{3}$),a′=2,
∴b′=$\sqrt{4-3}$=1,
∴橢圓C的標準方程為${x}^{2}+\frac{{y}^{2}}{4}$=1.
(3)把直線y=x+m代入橢圓方程${x}^{2}+\frac{{y}^{2}}{4}$=1,
得4x2+(x+m)2=4,即5x2+2mx+m2-4=0,
∵直線與橢圓有C公共點,
∴△=(2m)2-4×5×(m2-4)=-16m2+80≥0,
解得$-\sqrt{5}≤m≤\sqrt{5}$.
∴-$\sqrt{5}≤m≤\sqrt{5}$時,直線與橢圓有C公共點.
點評 本題考查雙曲線的實軸,虛軸長及漸近線方程、橢圓C的標準方程的求出,考查滿足直線與橢圓公共點的實數(shù)值的求法,是中檔題,解題時要認真審題,注意橢圓、雙曲線的性質(zhì)的合理運用.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=|x|和g(x)=$\sqrt{{x}^{2}}$ | B. | f(x)=$\sqrt{{x}^{2}}$和 g(x)=($\sqrt{x}$)2 | ||
C. | f(x)=$\frac{{x}^{2}-1}{x-1}$和g(x)=x+1 | D. | f(x)=x-1與g(x)=$\frac{{x}^{2}}{x}$-1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com