精英家教網 > 高中數學 > 題目詳情

【題目】已知f(x)是奇函數并且是R上的單調函數,若函數y=f(2x2+1)+f(λ﹣x)只有一個零點,則實數λ的值是(
A.
B.
C.﹣
D.﹣

【答案】C
【解析】解:∵函數y=f(x2)+f(k﹣x)只有一個零點,∴只有一個x的值,使f(2x2+1)+f(λ﹣x)=0. ∵函數f(x)是奇函數,∴只有一個x的值,使f(2x2+1)=f(x﹣λ),
又函數f(x)是R上的單調函數,∴只有一個x的值,使2x2+1=x﹣λ,
即方程2x2﹣x+λ+1=0有且只有一個解,
∴△=1﹣8(λ+1)=0,解得λ=﹣
故選:C.
【考點精析】利用奇偶性與單調性的綜合對題目進行判斷即可得到答案,需要熟知奇函數在關于原點對稱的區(qū)間上有相同的單調性;偶函數在關于原點對稱的區(qū)間上有相反的單調性.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】等比數列{an}的前n項和為Sn , 已知對任意的n∈N+ , 點(n,Sn)均在函數y=bx+r(b>0且b≠1,b,r均為常數的圖象上.
(1)求r的值.
(2)當b=2時,記bn=2(log2an+1)(n∈N+),證明:對任意的n∈N+,不等式成立

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數, .

(1)求函數的單調區(qū)間;

(2)若關于的方程有實數根,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某電影院共有1000個座位,票價不分等次,根據影院的經營經驗,當每張票價不超過10元時,票可全售出;當每張票價高于10元時,每提高1元,將有30張票不能售出,為了獲得更好的收益,需給影院定一個合適的票價,需符合的基本條件是:①為了方便找零和算賬,票價定為1元的整數倍;②電影院放一場電影的成本費用支出為5750元,票房的收入必須高于成本支出,用x(元)表示每張票價,用y(元)表示該影院放映一場的凈收入(除去成本費用支出后的收入),問:
(1)把y表示為x的函數,并求其定義域;
(2)試問在符合基本條件的前提下,票價定為多少時,放映一場的凈收人最多?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1的各個頂點與各棱的中點共20個點中,任取2點連成直線,在這些直線中任取一條,它與對角線BD1垂直的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某社區(qū)為豐富居民節(jié)日活動,組織了“迎新春”象棋大賽,已知報名的選手情況統(tǒng)計如下表:

組別

總計

中年組

91

老年組

16

已知中年組女性選手人數是僅比老年組女性選手人數多2人,若對中年組和老年組分別利用分層抽樣的方法抽取部分報名者參加比賽,已知老年組抽取了5人,其中女性3人,中年組抽取了7人.

(1)求表格中的數據;

(2)若從選出的中年組的選手中隨機抽取兩名進行比賽,求至少有一名女性選手的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(1)關于的不等式的解集不是空集,求的取值范圍;

(2),,且,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在統(tǒng)計學中,偏差是指個別測定值與測定的平均值之差,在成績統(tǒng)計中,我們把某個同學的某刻考試成績與該科班平均分的差叫某科偏差,班主任為了了解個別學生的偏科情況,對學生數學偏差(單位:分)與物理偏差(單位:分)之間的關系進行偏差分析,決定從全班40位同學中隨機抽取一個容量為8的樣本進行分析,得到他們的兩科成績偏差數據如表:

(1)已知之間具有線性相關關系,求關于的線性回歸方程;

(2)若這次考試該班數學平均分為120分,物理平均分為92,試預測數學成績126分的同學的物理成績.

參考公式: ,

參考數據: ,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線f(x)= (x>0)上有一點列Pn(xn , yn)(n∈N*),過點Pn在x軸上的射影是Qn(xn , 0),且x1+x2+x3+…+xn=2n+1﹣n﹣2.(n∈N*)
(1)求數列{xn}的通項公式;
(2)設四邊形PnQnQn+1Pn+1的面積是Sn , 求Sn;
(3)在(2)條件下,求證: + +…+ <4.

查看答案和解析>>

同步練習冊答案