【題目】如圖,四棱錐的底面是平行四邊形,,.

(1)求異面直線所成的角;

(2)若,,求二面角的余弦值.

【答案】(1)見解析;(2)

【解析】分析:(1)取的中點,連接,根據(jù)為等腰三角形得到,故平面,從而.

(2)由(1)得到,故以為原點建立空間直角坐標(biāo)系,通過計算平面和平面的法向量的夾角的余弦值得到二面角的余弦值.

詳解:(1)取中點,連接.

因為為等腰三角形且的中點,故

同理,有,而,故平面.

平面,故,所以異面直線所成的角為.

(2)設(shè),則,,又,可得.

由(1)知,從而平面

為坐標(biāo)原點,的方向分別為軸建立坐標(biāo)系.

,,

,所以,

,,

可求得平面的法向量,

平面的法向量,

所以

又二面角為銳角,故二面角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校有高中學(xué)生500人,其中男生320人,女生180.有人為了獲得該校全體高中學(xué)生的身高信息,采用分層抽樣的方法抽取樣本,并觀測樣本的指標(biāo)值(單位:cm),計算得男生樣本的均值為173.5,方差為17,女生樣本的均值為163.83,方差為30.03.

1)根據(jù)以上信息,能夠計算出總樣本的均值和方差嗎?為什么?

2)如果已知男、女樣本量按比例分配,你能計算出總樣本的均值和方差各為多少嗎?

3)如果已知男、女的樣本量都是25,你能計算出總樣本的均值和方差各為多少嗎?它們分別作為總體均值和方差的估計合適嗎?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).在以原點為極點,軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.

(1)求直線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

(2)若直線與曲線交于兩點,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)判斷函數(shù)的奇偶性并說明理由;

2)當(dāng)時,判斷函數(shù)上的單調(diào)性,并利用單調(diào)性的定義證明;

3)是否存在實數(shù),使得當(dāng)的定義域為時,值域為?若存在,求出實數(shù)的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,隨著汽車消費的普及,二手車流通行業(yè)得到迅猛發(fā)展.某汽車交易市場對2017 年成交的二手車的交易前的使用時間(以下簡稱“使用時間”)進(jìn)行統(tǒng)計,得到如圖1所示的頻率分布直方圖,在圖1對使用時間的分組中,將使用時間落入各組的頻率視為概率.

(1)若在該交易市場隨機選取3輛2017年成交的二手車,求恰有2輛使用年限在的概率;

(2)根據(jù)該汽車交易市場往年的數(shù)據(jù),得到圖2所示的散點圖,其中 (單位:年)表示二手車的使用時間,(單位:萬元)表示相應(yīng)的二手車的平均交易價格.

①由散點圖判斷,可采用作為該交易市場二手車平均交易價格關(guān)于其使用年限的回歸方程,相關(guān)數(shù)據(jù)如下表(表中):

試選用表中數(shù)據(jù),求出關(guān)于的回歸方程;

②該汽車交易市場擬定兩個收取傭金的方案供選擇.

甲:對每輛二手車統(tǒng)—收取成交價格的的傭金;

乙:對使用8年以內(nèi)(含8年)的二手車收取成交價格的的傭金,對使用時間8年以上(不含 8年)的二手車收取成交價格的的傭金.

假設(shè)采用何種收取傭金的方案不影響該交易市場的成交量,根據(jù)回歸方程和圖表1,并用,各時間組的區(qū)間中點值代表該組的各個值.判斷該汽車交易市場應(yīng)選擇哪個方案能獲得更多傭金.

附注:

于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為,;

②參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的上頂點為,右焦點為,直線與圓相切.

(1)求橢圓的方程;

(2)不過點的動直線與橢圓相交于兩點,且.求證:直線過定點,并求出該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓:經(jīng)過點,離心率為.

(1)求橢圓的方程;

(2)過點的直線交橢圓于,兩點,為橢圓的左焦點,若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,是過定點且傾斜角為的直線;在極坐標(biāo)系(以坐標(biāo)原點為極點,以軸非負(fù)半軸為極軸,取相同單位長度)中,曲線的極坐標(biāo)方程為.

(1)寫出直線的參數(shù)方程,并將曲線的方程化為直角坐標(biāo)方程;

(2)若曲線與直線相交于不同的兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體中,分別是的中點,則(

A. B. C. 平面 D. 平面

查看答案和解析>>

同步練習(xí)冊答案