分析 求導(dǎo)數(shù),并判斷f′(x)<0,從而得出函數(shù)f(x)在定義域[-3,1]上單調(diào)遞減,從而有f(1)≤f(x)≤f(-3),這便得出了原函數(shù)的值域.
解答 解:f′(x)=$-\frac{1}{2\sqrt{1-x}}-\frac{1}{2\sqrt{x+3}}<0$;
∴f(x)在[-3,1]上單調(diào)遞減;
∴f(1)≤f(x)≤f(-3);
即-2≤f(x)≤2;
∴原函數(shù)的值域為:[-2,2].
點評 考查值域的概念,根據(jù)導(dǎo)數(shù)符號判斷函數(shù)單調(diào)性的方法,以及根據(jù)函數(shù)的單調(diào)性求函數(shù)的值域,注意正確求導(dǎo).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com