已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π2
,x∈R)
的圖象的一部分如圖所示.
(I)求函數(shù)f(x)的解析式;
(II)求函數(shù)y=f(x)+f(x+2)的最大值與最小值.
分析:(I)由函數(shù)的最值求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,從而得到函數(shù)的解析式.
(II)利用兩角和差的正弦公式化簡(jiǎn)函數(shù)y=f(x)+f(x+2)的解析式為 2
2
cos
π
4
x
,由此求得函數(shù)的最大值與最小值.
解答:(I)由圖象,知A=2,
ω
=8
.∴ω=
π
4
,可得f(x)=2sin(
π
4
x+φ)
. …(2分)
當(dāng)x=1時(shí),有
π
4
×1+φ=
π
2
,∴φ=
π
4
.   …(4分)
f(x)=2sin(
π
4
x+
π
4
)
.         …(5分)
(II)y=2sin(
π
4
x+
π
4
)+2sin[
π
4
(x+2)+
π
4
]
=2sin(
π
4
x+
π
4
)+2cos(
π
4
x+
π
4
)
 …(7分)
=2
2
sin(
π
4
x+
π
2
)
=2
2
cos
π
4
x
. …(10分)
ymax=2
2
ymin=-2
2
.      …(12分)
點(diǎn)評(píng):本題主要考查利用y=Asin(ωx+∅)的圖象特征,由函數(shù)y=Asin(ωx+∅)的部分圖象求解析式,兩角和差的正弦公式的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-
12x+1

(1)求證:不論a為何實(shí)數(shù)f(x)總是為增函數(shù);
(2)確定a的值,使f(x)為奇函數(shù);
(3)當(dāng)f(x)為奇函數(shù)時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)圖象經(jīng)過(guò)點(diǎn)Q(8,6).
(1)求a的值,并在直線(xiàn)坐標(biāo)系中畫(huà)出函數(shù)f(x)的大致圖象;
(2)求函數(shù)f(t)-9的零點(diǎn);
(3)設(shè)q(t)=f(t+1)-f(t)(t∈R),求函數(shù)q(t)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-
1
2x+1
,若f(x)為奇函數(shù),則a=( 。
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a(x-1)x2
,其中a>0.
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若直線(xiàn)x-y-1=0是曲線(xiàn)y=f(x)的切線(xiàn),求實(shí)數(shù)a的值;
(III)設(shè)g(x)=xlnx-x2f(x),求g(x)在區(qū)間[1,e]上的最小值.(其中e為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定義域;
(2)若f(x)為奇函數(shù),求a的值;
(3)考察f(x)在定義域上單調(diào)性的情況,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案