已知拋物線y2=4x的焦點為F,過點P(2,0)的直線交拋物線于A(x1,y1)和B(x2,y2)兩點.則:(I)y1 y2=     ;(Ⅱ)三角形ABF面積的最小值是     
(I)-8;(Ⅱ).

試題分析:(I)①當斜率不存在時,過點P(2,0)的直線為,此時易知.②當斜率存在時,過點P(2,0)的直線可設為:.因為該直線與拋物線有兩個交點,所以.聯(lián)立方程化簡得:,由韋達定理得.綜合①②知.(Ⅱ)易知焦點,①當斜率存在時,,其中是點到直線的距離.即,.在直線上,,,,,其中,.②當斜率不存在時直線為,此時易知,,點到直線的距離是1,,綜上所述,三角形面積的最小值是.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

已知點P在拋物線上,且點P到x軸的距離與點P到此拋物線的焦點的距離之比為,則點P到x軸的距離是   (    )
A.B.C.1 D.2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知過點P(1,0)且傾斜角為60°的直線l與拋物線交于A,B兩點,則弦長|AB|=     .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線的焦點為,點為拋物線上的動點,點為其準線上的動點,當 為等邊三角形時,則的外接圓的方程為(     )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線y2= 2x的準線方程是(    )
A.y=B.y=-C.x=D.x=-

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設拋物線,直線過拋物線的焦點,且與的對稱軸垂直,交于兩點, 的準線上一點,若的面積為,則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知正六邊形的邊長是,一條拋物線恰好經過該六邊形的四個頂點,則拋物線的焦點到準線的距離是(       )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

曲線C上任一點到定點(0,)的距離等于它到定直線的距離.
(1)求曲線C的方程;
(2)經過P(1,2)作兩條不與坐標軸垂直的直線分別交曲線C于A、B兩點,且,設M是AB中點,問是否存在一定點和一定直線,使得M到這個定點的距離與它到定直線的距離相等.若存在,求出這個定點坐標和這條定直線的方程.若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

拋物線的焦點為,點在拋物線上,且,過弦中點作準線的垂線,垂足為,則的最大值為_________.

查看答案和解析>>

同步練習冊答案