【題目】選修4-4:坐標(biāo)系與參數(shù)方程
將圓上每一點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)變?yōu)樵瓉淼?/span>2倍得到曲線.
(1)寫出曲線的參數(shù)方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸坐標(biāo)建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為,若分別為曲線和直線上的一點(diǎn),求的最近距離.
【答案】(1)(為參數(shù));(2).
【解析】試題分析:(1)設(shè)為圓上一點(diǎn),在已知變換下上的點(diǎn),得出橢圓的標(biāo)準(zhǔn)方程,進(jìn)而得出橢圓的參數(shù)方程;(2)得出直線的方程,設(shè),利用點(diǎn)到直線的距離公式,求得,利用三角函數(shù)的性質(zhì),即可求解最小值.
試題解析:(1)設(shè)為圓上一點(diǎn),在已知變換下上的點(diǎn),依題意,
由得,即,
故的參數(shù)方程為(為參數(shù))
(2)將的極坐標(biāo)方程化為直角坐標(biāo)方程: ,
設(shè),設(shè)點(diǎn)到的距離為,
,
其中,取等時.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知圓C:(x﹣2)2+(y+1)2=5,過點(diǎn)P(5,0)且斜率為k的直線與圓C相交于不同的兩點(diǎn)A,B.
(I)求k的取值范圍;
(Ⅱ)若弦長|AB|=4,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在復(fù)平面內(nèi),復(fù)數(shù)3-4i,i(2+i)對應(yīng)的點(diǎn)分別是A,B,則線段AB的中點(diǎn)C對應(yīng)的復(fù)數(shù)為( )
A.-2+2iB.2-2i
C.-1+iD.1-i
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從參加某次知識競賽的同學(xué)中,選取60名同學(xué)將其成績(百分制)(均為整數(shù))分成6組后,得到部分頻率分布直方圖(如圖),觀察圖形中的信息,回答下列問題.
(1)求分?jǐn)?shù)在[70,80)內(nèi)的頻率,并補(bǔ)全這個頻率分布直方圖;
(2)從頻率分布直方圖中,估計本次考試的平均分;
(3)若從60名學(xué)生中隨機(jī)抽取2人,抽到的學(xué)生成績在[40,70)記0分,在[70,100]記1分,用X表示抽取結(jié)束后的總記分,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)高一女生共有450人,為了了解高一女生的身高情況,隨機(jī)抽取部分高一女生測量身高,所得數(shù)據(jù)整理后列出頻率分布表如下:
組別 | 頻數(shù) | 頻率 |
145.5~149.5 | 8 | 0.16 |
149.5~153.5 | 6 | 0.12 |
153.5~157.5 | 14 | 0.28 |
157.5~161.5 | 10 | 0.20 |
161.5~165.5 | 8 | 0.16 |
165.5~169.5 | ||
合計 |
(1)求出表中字母所對應(yīng)的數(shù)值;
(2)在給出的直角坐標(biāo)系中畫出頻率分布直方圖;
(3)估計該校高一女生身高在149.5~165.5范圍內(nèi)有多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查甲、乙兩校高三年級學(xué)生某次聯(lián)考數(shù)學(xué)成績情況,用簡單隨機(jī)抽樣,從這兩校中各抽取30名高三年級學(xué)生,以他們的數(shù)學(xué)成績(百分制)作為樣本,樣本數(shù)據(jù)的莖葉圖如圖.
(1)若甲校高三年級每位學(xué)生被抽取的概率為0.05,求甲校高三年級學(xué)生總?cè)藬?shù),并估計甲校高三年級這次聯(lián)考數(shù)學(xué)成績的及格率(60分及60分以上為及格);
(2)設(shè)甲、乙兩校高三年級學(xué)生這次聯(lián)考數(shù)學(xué)平均成績分別為1,2,估計1-2的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某蛋糕店每天制作生日蛋糕若干個,每個生日蛋糕的成本為50元,然后以每個100元的價格出售,如果當(dāng)天賣不完,剩下的蛋糕作垃圾處理.現(xiàn)需決策此蛋糕店每天應(yīng)該制作幾個生日蛋糕,為此搜集并整理了100天生日蛋糕的日需求量(單位:個),得到如圖所示的柱狀圖,以100天記錄的各需求量的頻率作為每天各需求量發(fā)生的概率.若蛋糕店一天制作17個生日蛋糕.
(1)求當(dāng)天的利潤(單位:元)關(guān)于當(dāng)天需求量(單位:個,)的函數(shù)解析式;
(2)求當(dāng)天的利潤不低于750元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點(diǎn)的動直線與拋物線相交于、兩點(diǎn).當(dāng)直線的斜率是時,.
(1)求拋物線的方程;
(2)設(shè)線段的中垂線在軸上的截距為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩艘輪船都要?吭谕粋泊位,它們可能在一晝夜的任意時刻到達(dá).甲、乙兩船?坎次坏臅r間分別為4小時與2小時,求有一艘船?坎次粫r必需等待一段時間的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com