【題目】在如圖所示的幾何體中,D是AC的中點,EF∥DB.
(1)已知AB=BC,AF=CF,求證:AC⊥平面BEF;
(2)已知G、H分別是EC和FB的中點,求證:GH∥平面ABC.

【答案】
(1)證明:∵EF∥DB,∴EF與DB確定平面BDEF.

如圖①,連結(jié)DF.∵AF=CF,D是AC的中點,∴DF⊥AC.同理可得BD⊥AC.

又BD∩DF=D,BD、DF平面BDEF,∴AC⊥平面BDEF,即AC⊥平面BEF.


(2)證明:如圖②,設(shè)FC的中點為I,連接GI,HI.

在△CEF中,∵G分別是EC的中點,∴GI∥EF.

又EF∥DB,∴GI∥DB.

在△CFB中,∵H分別是FB的中點,∴HI∥BC.

又HI∩GI=I,∴平面GHI∥平面ABC.

∵GH平面GHI,∴GH∥平面ABC.


【解析】(1)如圖連結(jié)DF,證明DF⊥AC,BD⊥AC.推出AC⊥平面BDEF,即可證明AC⊥平面BEF.(2)設(shè)FC的中點為I,連接GI,HI.證明GI∥EF.GI∥DB.證明HI∥BC.即可證明GHI∥平面ABC.然后證明GH∥平面ABC.
【考點精析】解答此題的關(guān)鍵在于理解直線與平面平行的判定的相關(guān)知識,掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行,以及對直線與平面垂直的判定的理解,了解一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學思想.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sin(2x+φ),其中φ為實數(shù),若f(x)≤|f( )|對x∈R恒成立,且f( )>f(π),則f(x)的單調(diào)遞增區(qū)間是(
A.[kπ﹣ ,kπ+ ](k∈Z)
B.[kπ,kπ+ ](k∈Z)
C.[kπ+ ,kπ+ ](k∈Z)
D.[kπ﹣ ,kπ](k∈Z)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)在區(qū)間上不單調(diào),求的取值范圍.

(2)令,是否存在實數(shù),對任意,存在,使得成立?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是菱形, 平面, 是棱上的一個動點.

(Ⅰ)若的中點,求證: 平面;

)求證:平面平面;

(Ⅲ)若三棱錐的體積是四棱錐體積的,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋子里有編號為的五個球,某位教師從袋中任取兩個不同的球. 教師把所取兩球編號的和只告訴甲,其乘積只告訴乙,讓甲、乙分別推斷這兩個球的編號.

甲說:我無法確定.”

乙說:我也無法確定.”

甲聽完乙的回答以后,甲又說:我可以確定了.”

根據(jù)以上信息, 你可以推斷出抽取的兩球中

A. 一定有3號球 B. 一定沒有3號球 C. 可能有5號球 D. 可能有6號球

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(Ⅰ)求曲線在點處的切線方程;

(Ⅱ)求證: ;

(Ⅲ)判斷曲線是否位于軸下方,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】假設(shè)某種設(shè)備使用的年限x(年)與所支出的維修費用y(元)有以下統(tǒng)計資料:

參考數(shù)據(jù): .參考公式:

如果由資料知yx呈線性相關(guān)關(guān)系.試求:

1 2)線性回歸方程

3)估計使用10年時,維修費用是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】等比數(shù)列{an}的前n項和為Sn , 已知對任意的n∈N+ , 點(n,Sn)均在函數(shù)y=bx+r(b>0且b≠1,b,r均為常數(shù)的圖象上.
(1)求r的值.
(2)當b=2時,記bn=2(log2an+1)(n∈N+),證明:對任意的n∈N+,不等式成立

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), .

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若關(guān)于的方程有實數(shù)根,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案