分析 (1)根據(jù)S1,2S2,3S3成等差數(shù)列建立等式,求出q的值,然后根據(jù)等比數(shù)列的求和公式建立等式,可求出的首項,從而求出數(shù)列的通項;
(2)運用等比數(shù)列的求和公式和不等式的性質,即可得證.
解答 解:(1)設等比數(shù)列{an}的公比為q,
∵S1,2S2,3S3成等差數(shù)列
∴4S2=S1+3S3,即4(a1+a2)=a1+3(a1+a2+a3),
∴a2=3a3,即q=$\frac{1}{3}$,
又S4=$\frac{40}{27}$,∴$\frac{{a}_{1}(1-{q}^{4})}{1-q}$=$\frac{40}{27}$,
解得a1=1,
∴an=($\frac{1}{3}$)n-1;
(2)證明:Sn=$\frac{1-(\frac{1}{3})^{n}}{1-\frac{1}{3}}$=$\frac{3}{2}$(1-$\frac{1}{{3}^{n}}$)<$\frac{3}{2}$,
即有Sn<$\frac{3}{2}$.
點評 本題主要考查了等差數(shù)列的性質,以及等比數(shù)列的求和,同時考查了運算求解的能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | m2-n2 | B. | n2-m2 | C. | m2+n2 | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [3,+∞) | B. | (3,+∞) | C. | [2,+∞) | D. | (0,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,$\frac{π}{6}$) | B. | ($\frac{π}{6}$,$\frac{π}{4}$) | C. | ($\frac{π}{4}$,$\frac{π}{3}$) | D. | ($\frac{π}{3}$,$\frac{π}{2}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com