9.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{3},0≤x≤1}\\{x,x>1}\end{array}\right.$,則定積分${∫}_{0}^{2}$f(x)dx=$\frac{7}{4}$.

分析 利用定積分的運(yùn)算法則,將所求寫(xiě)成兩個(gè)定積分相加的形式,然后分別計(jì)算定積分即可.

解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{3},0≤x≤1}\\{x,x>1}\end{array}\right.$,
則定積分${∫}_{0}^{2}$f(x)dx=${∫}_{0}^{1}{x}^{3}dx+{∫}_{1}^{2}xdx$=($\frac{1}{4}{x}^{4}$)|${\;}_{0}^{1}$+$\frac{1}{2}{x}^{2}$|${\;}_{1}^{2}$=$\frac{1}{4}+2-\frac{1}{2}=\frac{7}{4}$;
故答案為:$\frac{7}{4}$

點(diǎn)評(píng) 本題考查了定積分的計(jì)算;利用定積分運(yùn)算法則的可加性解答.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若復(fù)數(shù)z滿足|z|=2,則$|1+\sqrt{3}i+z|$的取值范圍是[0,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.袋中有20個(gè)大小相同的球,其中記上0號(hào)的有10個(gè),記上n號(hào)的有n個(gè)(n=1,2,3,4),現(xiàn)從袋中任取一球,X表示所取球的標(biāo)號(hào),
(1)求X的分布列,均值和方差;
(2)若Y=aX+b,E(Y)=1,D(Y)=11,試求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知不等式|x-a|+|2x-3|>$\frac{a^2}{2}$.
(1)已知a=2,求不等式的解集;
(2)已知不等式的解集為R,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若i為虛數(shù)單位,a,b∈R,且$\frac{a+2i}{I}$=b+i,則復(fù)數(shù)a+bi的模等于( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.第35屆牡丹花會(huì)期間,我班有5名學(xué)生參加志愿者服務(wù),服務(wù)場(chǎng)所是王城公園和牡丹公園.
(1)若學(xué)生甲和乙必須在同一個(gè)公園,且甲和丙不能在同一個(gè)公園,則共有多少種不同的分配方案?
(2)每名學(xué)生都被隨機(jī)分配到其中的一個(gè)公園,設(shè)X,Y分別表示5名學(xué)生分配到王城公園和牡丹公園的人數(shù),記ξ=|X-Y|,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望E(ξ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且(a+b+c)(a+b-c)=3ab.
(Ⅰ)求角C的值;
(Ⅱ)若c=2,且△ABC為銳角三角形,求a+b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)θ為銳角,若cos(θ-$\frac{3π}{4}$)=$\frac{3}{5}$,則sin(θ+$\frac{π}{4}$)=$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知f(x)是定義在R上的奇函數(shù),且f(x+2)=f(x-2);當(dāng)0≤x≤1時(shí),f(x)=$\sqrt{x}$,則f(1)+f(2)+f(3)+…+f(2017)等于( 。
A.-1B.0C.1D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案