5.已知函數(shù)f(x)=-x3+ax2-x-2在(-∞,+∞)上是單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-$\sqrt{3}$)∪($\sqrt{3}$,+∞)B.(-$\sqrt{3}$,$\sqrt{3}$)C.(-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞)D.[-$\sqrt{3}$,$\sqrt{3}$]

分析 先求函數(shù)的導(dǎo)數(shù),因?yàn)楹瘮?shù)f(x)在(-∞,+∞)上是單調(diào)函數(shù),所以在(-∞,+∞)上f′(x)≤0恒成立,再利用一元二次不等式的解得到a的取值范圍即可.

解答 解:f(x)=-x3+ax2-x-2的導(dǎo)數(shù)為f′(x)=-3x2+2ax-1,
∵函數(shù)f(x)在(-∞,+∞)上是單調(diào)函數(shù),∴在(-∞,+∞)上f′(x)≤0恒成立,
即-3x2+2ax-1≤0恒成立,∴△=4a2-12≤0,解得-$\sqrt{3}$≤a≤$\sqrt{3}$,
∴實(shí)數(shù)a的取值范圍是[-$\sqrt{3}$,$\sqrt{3}$]
故選:D.

點(diǎn)評(píng) 本題主要考查函數(shù)的導(dǎo)數(shù)與單調(diào)區(qū)間的關(guān)系,以及恒成立問題的解法,屬于導(dǎo)數(shù)的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若2${\;}^{{a}_{2}}$•2${\;}^{{a}_{8}}$=256,則S9的值為( 。
A.64B.36C.72D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{a}^{x}+1,x≤0}\\{|lnx|,x>0}\end{array}\right.$當(dāng)1<a<2時(shí),關(guān)于x的方程f[f(x)]=a實(shí)數(shù)解的個(gè)數(shù)為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知$y=\sqrt{x}$,求與直線y=-2x-4垂直的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.直線$\left\{\begin{array}{l}x=1-\frac{1}{2}t\\ y=-3\sqrt{3}+\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t為參數(shù))和圓x2+y2=16交于A,B兩點(diǎn),則AB的中點(diǎn)坐標(biāo)為( 。
A.(3,-3)B.$(-\sqrt{3},3)$C.$(\sqrt{3},-3)$D.(-$\frac{3}{2}$,-$\frac{\sqrt{3}}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)y=$\frac{x^2}{{{2^x}-2}}$的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=2cos($\frac{π}{2}$-ωx)+2sin($\frac{π}{3}$-ωx)(ω>0,x∈R),若f$(\frac{π}{6})$+f$(\frac{π}{2})$=0,且f(x)在區(qū)間$(\frac{π}{6},\frac{π}{2})$上遞減.
(1)求f(0)的值;     
(2)求ω;
(3)解不等式f(x)≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.如圖是根據(jù)我省的統(tǒng)計(jì)年鑒中的資料做成的2007年至2016年我省城鎮(zhèn)居民百戶家庭人口數(shù)的莖葉圖.圖中左邊的數(shù)字從左到右分別表示城鎮(zhèn)居民百戶家庭人口數(shù)的百位數(shù)字和十位數(shù)字,右邊的數(shù)字表示城鎮(zhèn)居民百戶家庭人口數(shù)的個(gè)位數(shù)字.從圖中可以得到2007年至2016年我省城鎮(zhèn)居民百戶家庭人口數(shù)的平均數(shù)為303.6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在多面體ABCDE中,ABCD是矩形,平面ABCD⊥平面CDE,CD⊥DE,2DE=2DC=BC,F(xiàn)是棱BC的中點(diǎn).
(1)證明:AF⊥EF;
(2)已知CD=1,求點(diǎn)B到平面AEF的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案