考點(diǎn):基本不等式
專(zhuān)題:不等式的解法及應(yīng)用
分析:令x+y+z=k,代入x
2+y
2+z
2=2xyz=2xyz得得4(x+y)
2-(4k+2)(x+y)+k
2=0,再根據(jù)基本不等式x+y=(x+y)(
+
)≥4,然后求出k的取值范圍,最后x+y=
≥4求出xk
的最小值.
解答:
解:
+
=1,∴x+y=xy.①
設(shè)x+y+z=k,則z=k-x-y,
代入x
2+y
2+z
2=2xyz=x
2+y
2+(k-x-y)
2=2xy(k-x-y)=2(x+y)[k-(x+y)],(由①)
2(x+y)
2-2xy+k
2-2k(x+y)=2k(x+y)-2(x+y)
2,
4(x+y)
2-(4k+2)(x+y)+k
2=0,
=(2k+1)
2-4k
2=4k+1,
x+y=(x+y)(
+
)≥4,
∴x+y=
≥4
2k+1+
≥16,
≥15-2k,
化為k≥=7.5,或k<7.5且4k
2-60k+225≤4k+1,
4k
2-64k+224≤0,
k
2-16k+56≤0,
∴k≥8-
2,
∴x+y+z的最小值是8-2
.
故答案為:8-2
點(diǎn)評(píng):本題主要考查了不等式的基本應(yīng)用,本題關(guān)鍵是轉(zhuǎn)化思想,屬于中檔題.