已知直線過(guò)橢圓E:x2+2y2=2的右焦點(diǎn)F,且與E相交于P,Q兩點(diǎn)。
(1)設(shè)(O為原點(diǎn)),求點(diǎn)R的軌跡方程;
(2)若直線的傾斜角為60°,求的值。
解:(1)設(shè),

,易得右焦點(diǎn)F(1,0),
當(dāng)直線l⊥x軸時(shí),直線的方程是:x=1,根據(jù)對(duì)稱(chēng)性可知R(1,0)
當(dāng)直線l的斜率存在時(shí),可設(shè)直線l的方程為y=k(x-1),
代入E有,,,
于是R(x,y),,
消去參數(shù)k,得,而R(1,0)也適上式,
故R的軌跡方程是。
(2)設(shè)橢圓另一個(gè)焦點(diǎn)為F′,
中,,
設(shè),則,
由余弦定理得;
同理,在中,設(shè),則,
也由余弦定理,得,
于是。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知點(diǎn)F橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn),點(diǎn)M在橢圓E上,以M為圓心的圓與x軸切于點(diǎn)F,與y軸交于A、B兩點(diǎn),且△ABM是邊長(zhǎng)為2的正三角形;又橢圓E上的P、Q兩點(diǎn)關(guān)于直線l:y=x+n對(duì)稱(chēng).
(I)求橢圓E的方程;
(II)當(dāng)直線l過(guò)點(diǎn)(0,
1
5
)時(shí),求直線PQ的方程;
(III)若點(diǎn)C是直線l上一點(diǎn),且∠PCQ=
3
,求△PCQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年黑龍江省雞西市密山一中高三(下)第五次月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知點(diǎn)F橢圓E:+=1(a>b>0)的右焦點(diǎn),點(diǎn)M在橢圓E上,以M為圓心的圓與x軸切于點(diǎn)F,與y軸交于A、B兩點(diǎn),且△ABM是邊長(zhǎng)為2的正三角形;又橢圓E上的P、Q兩點(diǎn)關(guān)于直線l:y=x+n對(duì)稱(chēng).
(I)求橢圓E的方程;
(II)當(dāng)直線l過(guò)點(diǎn)(0,)時(shí),求直線PQ的方程;
(III)若點(diǎn)C是直線l上一點(diǎn),且∠PCQ=,求△PCQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年天津市十二所重點(diǎn)中學(xué)高三聯(lián)考數(shù)學(xué)試卷2(文科)(解析版) 題型:解答題

已知點(diǎn)F橢圓E:+=1(a>b>0)的右焦點(diǎn),點(diǎn)M在橢圓E上,以M為圓心的圓與x軸切于點(diǎn)F,與y軸交于A、B兩點(diǎn),且△ABM是邊長(zhǎng)為2的正三角形;又橢圓E上的P、Q兩點(diǎn)關(guān)于直線l:y=x+n對(duì)稱(chēng).
(I)求橢圓E的方程;
(II)當(dāng)直線l過(guò)點(diǎn)(0,)時(shí),求直線PQ的方程;
(III)若點(diǎn)C是直線l上一點(diǎn),且∠PCQ=,求△PCQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年天津市十二所重點(diǎn)中學(xué)高三聯(lián)考數(shù)學(xué)試卷2(理科)(解析版) 題型:解答題

已知點(diǎn)F橢圓E:+=1(a>b>0)的右焦點(diǎn),點(diǎn)M在橢圓E上,以M為圓心的圓與x軸切于點(diǎn)F,與y軸交于A、B兩點(diǎn),且△ABM是邊長(zhǎng)為2的正三角形;又橢圓E上的P、Q兩點(diǎn)關(guān)于直線l:y=x+n對(duì)稱(chēng).
(I)求橢圓E的方程;
(II)當(dāng)直線l過(guò)點(diǎn)(0,)時(shí),求直線PQ的方程;
(III)若點(diǎn)C是直線l上一點(diǎn),且∠PCQ=,求△PCQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年靖安中學(xué)高三高考模擬考試數(shù)學(xué)卷 題型:解答題

(本小題滿(mǎn)分14分)已知點(diǎn)F橢圓E:的右焦點(diǎn),點(diǎn)M在橢圓E上,以M為圓心的圓與x軸切于點(diǎn)F,與y軸交于A、B兩點(diǎn),且是邊長(zhǎng)為2的正三角形;又橢圓E上的P、Q兩點(diǎn)關(guān)于直線對(duì)稱(chēng).

(1)求橢圓E的方程;(2)當(dāng)直線過(guò)點(diǎn)()時(shí),求直線PQ的方程;

(3)若點(diǎn)C是直線上一點(diǎn),且=,求面積的最大值.

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案