已知f(x)f(y)=f(2xy+3)+3f(x+y)-3f(x)+6x,則f(x)=
 
考點(diǎn):函數(shù)解析式的求解及常用方法
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:令x=y=0,x=0,y=1及x=1,y=0,從而得到方程,聯(lián)立方程解得f(0)=3,f(1)=5,f(3)=9;從而求f(x).
解答: 解:令x=y=0得,f2(0)=f(3)+3f(0)-3f(0),
即f(3)=f2(0)①,
同理,令x=0,y=1和x=1,y=0化簡可得;
f(0)f(1)=f(3)+3f(1)-3f(0)②,
f(1)f(0)=f(3)+6③,
聯(lián)立①②③解得,f(0)=3,f(1)=5,f(3)=9;
則令y=0得,
f(x)f(0)=f(3)+3f(x)-3f(x)+6x,
即3f(x)=9+6x,
則f(x)=2x+3.
故答案為:2x+3.
點(diǎn)評(píng):本題考查了函數(shù)的解析式的求法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義一種運(yùn)算如下:
ab
cd
=ad-bc,則復(fù)數(shù)
1+i-1
23i
的共軛復(fù)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)n∈N*,點(diǎn)(n,an)橫在直線f(x)=-2x+k上,點(diǎn)(n,Sn)恒在拋物線g(x)=ax2+x上,其中k,a為常數(shù).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求直線f(x)與拋物線g(x)所圍成的封閉圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角θ的終邊過點(diǎn)P(-12,5),求角θ的三角函數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
2x-1
+
1-2x
+4的定義域?yàn)?div id="irfw7e2" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x、y、z>0滿足xyz+y+z=12,則log4x+log2y+log2z的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

P為△ABC所在平面外一點(diǎn),O為P在平面ABC上的射影.
(1)若PA、PB、PC兩兩互相垂直,則O點(diǎn)是△ABC的
 
心;
(2)若P到△ABC三邊距離相等,且O在△ABC內(nèi)部,則點(diǎn)O是△ABC的
 
心;
(3)若PA⊥BC,PB⊥AC,PC⊥AB,則點(diǎn)O是△ABC的
 
心;
(4)若PA、PB、PC與底面ABC成等角,則點(diǎn)O是△ABC的
 
心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式:mx2-(m+3)x-1≥0(m≤0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=1,a2=
1
2
,且an+2=
an+12
an+an+1
,則該數(shù)列的通項(xiàng)公式an=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案