【題目】設函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)零點,證明:.

【答案】(1)在上是增函數(shù),在上是減函數(shù); (2).

【解析】

(1)先確定函數(shù)的定義域,然后求,進而根據(jù)導數(shù)與函數(shù)單調(diào)性的關系,判斷函數(shù) 的單調(diào)區(qū)間;

(2)采用分離參數(shù)法,得,根據(jù)上存在零點,可知有解,構造,求導,知上存在唯一的零點,即零點k滿足,進而求得,再根據(jù)有解,得證

(1)解:函數(shù)的定義域為,

因為,所以

所以當時,,上是增函數(shù);

時,,上是減函數(shù).

所以上是增函數(shù),在上是減函數(shù).

(2)證明:由題意可得,當時,有解,

有解.

,則

設函數(shù),所以上單調(diào)遞增.

,所以上存在唯一的零點.

上存在唯一的零點.設此零點為,則

時,;當時,

所以上的最小值為

又由,可得,所以,

因為上有解,所以,即

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱錐的所有頂點都在球的球面上,平面,,若球的表面積為,則三棱錐的側面積的最大值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】大型綜藝節(jié)目《最強大腦》中,有一個游戲叫做盲擰魔方,就是玩家先觀察魔方狀態(tài)并進行記憶,記住后蒙住眼睛快速還原魔方,盲擰在外人看來很神奇,其實原理是十分簡單的,要學會盲擰也是很容易的.根據(jù)調(diào)查顯示,是否喜歡盲擰魔方與性別有關.為了驗證這個結論,某興趣小組隨機抽取了50名魔方愛好者進行調(diào)查,得到的情況如下表所示:

喜歡盲擰

不喜歡盲擰

總計

22

30

12

總計

50

1

并邀請這30名男生參加盲擰三階魔方比賽,其完成情況如下表所示:

成功完成時間(分鐘)

[0,10)

[1020)

[20,30)

[30,40]

人數(shù)

10

10

5

5

2

1)將表1補充完整,并判斷能否在犯錯誤的概率不超過0.025的前提下認為是否喜歡盲擰與性別有關?

2)根據(jù)表2中的數(shù)據(jù),求這30名男生成功完成盲擰的平均時間(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代替);

3)現(xiàn)從表2中成功完成時間在[0,10)內(nèi)的10名男生中任意抽取3人對他們的盲擰情況進行視頻記錄,記成功完成時間在[010)內(nèi)的甲、乙、丙3人中被抽到的人數(shù)為,求的分布列及數(shù)學期望.

附參考公式及數(shù)據(jù):,其中.

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓.

(1)過原點的直線被圓所截得的弦長為2,求直線的方程;

(2)外的一點向圓引切線,為切點,為坐標原點,若,求使最短時的點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,且,求

(1)的值;

(2)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為提高玉米產(chǎn)量,某種植基地對單位面積播種數(shù)與每棵作物的產(chǎn)量之間的關系進行了研究,收集了塊試驗田的數(shù)據(jù),得到下表:

試驗田編號

(棵/)

(斤/棵)

技術人員選擇模型作為的回歸方程類型,令,相關統(tǒng)計量的值如下表:

由表中數(shù)據(jù)得到回歸方程后進行殘差分析,殘差圖如圖所示:

(1)根據(jù)殘差圖發(fā)現(xiàn)一個可疑數(shù)據(jù),請寫出可疑數(shù)據(jù)的編號(給出判斷即可,不必說明理由);

(2)剔除可疑數(shù)據(jù)后,由最小二乘法得到關于的線性回歸方程中的,求關于的回歸方程;

(3)利用(2)得出的結果,計算當單位面積播種數(shù)為何值時,單位面積的總產(chǎn)量的預報值最大?(計算結果精確到

附:對于一組數(shù)據(jù),,其回歸直線的斜率和截距的最小二乘法估計分別為,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】13分){an}是公比為正數(shù)的等比數(shù)列a1=2,a3=a2+4

)求{an}的通項公式;

)設{bn}是首項為1,公差為2的等差數(shù)列,求數(shù)列{an+bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,四棱錐中,底面,,,,,的中點.

(1)求證:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一袋中裝有形狀、大小都相同的6只小球,其中有3只紅球、2只黃球和1只藍球.若從中1次隨機摸出2只球,則1只紅球和1只黃球的概率為__________,2只球顏色相同的概率為________.

查看答案和解析>>

同步練習冊答案