已知函數(shù),

(1)求曲線y=f(y)在點P(1,4)處的切線方程;

(2)求此函數(shù)的單調(diào)區(qū)間.

答案:
解析:

  解:(1)),所以在點處的切線的斜率

  所以切線的方程為,即為所求.

  (2)由(1)可知,恒成立,所以,此函數(shù)的單調(diào)遞增區(qū)間為,無單減區(qū)間


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(本小題滿分14分)已知函數(shù).(1) 求函數(shù)的最小正周期,并寫出函數(shù)圖象的對稱軸方程;(2) 若,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年山東省濟南市高三上學期期末考試理科數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)

(1)求的單調(diào)區(qū)間;

(2)若,在區(qū)間恒成立,求a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆浙江省寧波市高一下學期期中考試文科數(shù)學試卷(解析版) 題型:解答題

已知函數(shù),

(1)求函數(shù)的單調(diào)遞減區(qū)間;

(2)當時,求函數(shù)的最值及相應(yīng)的.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆山東省濟寧市高二5月質(zhì)量檢測理科數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)

(1)求的單調(diào)區(qū)間;

(2)當時,判斷的大小,并說明理由;

(3)求證:當時,關(guān)于的方程:在區(qū)間上總有兩個不同的解.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省汕頭市高三畢業(yè)班教學質(zhì)量檢測文科數(shù)學(含解析) 題型:解答題

(本題滿分14分)

    已知函數(shù),

    (1)求的最小值;

(2)若對所有都有,求實數(shù)的取值范圍.

 

 

查看答案和解析>>

同步練習冊答案