【題目】已知f(x)=3sinx﹣πx,命題p:x∈(0, ),f(x)<0,則(
A.p是假命題,¬p:?x∈(0, ),f(x)≥0
B.p是假命題,¬p:?x0∈(0, ),f(x0)≥0
C.p是真命題,¬p:?x∈(0, ),f(x)>0
D.p是真命題,¬p:?x0∈(0, ),f(x0)≥0

【答案】D
【解析】解:由三角函數(shù)線的性質(zhì)可知,當x∈(0, )時,sinx<x ∴3sinx<3x<πx
∴f(x)=3sinx﹣πx<0
即命題p:x∈(0, ),f(x)<0為真命題
根據(jù)全稱命題的否定為特稱命題可知¬p:x0∈(0, ),f(x0)≥0
故選D
由三角函數(shù)線的性質(zhì)可知,當x∈(0, )時,sinx<x可判斷p的真假,根據(jù)全稱命題的否定為特稱命題可知¬p.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個圓錐的底面半徑為1,高為3,在圓錐中有一個半徑為x的內(nèi)接圓柱.

(1)試用x表示圓柱的高;

(2)x為何值時,圓柱的側(cè)面積最大,最大側(cè)面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校有,,,四件作品參加航模類作品比賽.已知這四件作品中恰有兩件獲獎.在結(jié)果揭曉前,甲、乙、丙、丁四位同學(xué)對這四件參賽作品的獲獎情況預(yù)測如下:

甲說:“、同時獲獎”;

乙說:“、不可能同時獲獎”;

丙說:“獲獎”;

丁說:“、至少一件獲獎”.

如果以上四位同學(xué)中有且只有二位同學(xué)的預(yù)測是正確的,則獲獎的作品是( )

A. 作品與作品 B. 作品與作品 C. 作品與作品 D. 作品與作品

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在下列命題中,①的一個充要條件是與它的共軛復(fù)數(shù)相等:

②利用獨立性檢驗來考查兩個分類變量,是否有關(guān)系,當隨機變量的觀測值值越大,“有關(guān)系”成立的可能性越大;

③在回歸分析模型中,若相關(guān)指數(shù)越大,則殘差平方和越小,模型的擬合效果越好;

④若是兩個相等的實數(shù),則是純虛數(shù);

⑤某校高三共有個班,班有人,班有人,班有人,由此推測各班都超過人,這個推理過程是演繹推理.

其中真命題的序號為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國家質(zhì)量監(jiān)督檢驗檢疫局于2004531日發(fā)布了新的車輛駕駛?cè)藛T血液、呼氣酒精含量閥值與檢驗國家標準新標準規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克百毫升,小于80毫克百毫升為飲酒駕車,血液中的酒精含量大于或等于80毫克百毫升為醉酒駕車經(jīng)過反復(fù)試驗,喝一瓶啤酒后酒精在人體血液中的變化規(guī)律的“散點圖”如圖:

該函數(shù)近似模型如下:,又已知剛好過1小時時測得酒精含量值為毫克百毫升根據(jù)上述條件,回答以下問題:

試計算喝1瓶啤酒多少小時血液中的酒精含量達到最大值?最大值是多少?

試計算喝一瓶啤酒后多少小時后才可以駕車?時間以整小時計算

參考數(shù)據(jù):,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】f(n)=1+ + +…+ (n∈N*),計算可得f(2)= ,f(4)>2,f(8)> ,f(16)>3,f(32)> ,推測當n≥2時,有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,已知,上,且平面.

(Ⅰ)求證:平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,直線l,設(shè)圓C的半徑為1,圓心在l上.

若圓心C也在直線上,過A作圓C的切線,求切線方程;

若圓C上存在點M,使,求圓心C的橫坐標a取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,AD=PD=2,PA=2 ,∠PDC=120°,點E為線段PC的中點,點F在線段AB上. (Ⅰ)若AF= ,求證:CD⊥EF;
(Ⅱ)設(shè)平面DEF與平面DPA所成二面角的平面角為θ,試確定點F的位置,使得cosθ=

查看答案和解析>>

同步練習(xí)冊答案