如圖,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,A1B1⊥BC,BC=1,
x2
a2
+
y2
b2
=1(a>b>0),(0,
3
)
、F分別為F1(-c,0),F(xiàn)2(c,0)、BC的中點.
(Ⅰ)求證:C1F∥平面ABE;
(Ⅱ)求三棱錐A-BCE的體積.
考點:棱柱、棱錐、棱臺的體積,直線與平面平行的判定
專題:空間位置關系與距離
分析:(Ⅰ)運用中點得出FG∥AC,且FG=
1
2
AC
,即四邊形FGEC1為平行四邊形,C1F∥EG,EG?平面ABE,C1F?平面ABE,運用定理判斷即可.
(Ⅱ)在三角形ABC中,求解AB=
CA2-CB2
=
3
,運用:三棱錐A-BCE的體積為VA-BCE=VE-ABE
解答: 解:(Ⅰ):取AB中點G,連結EG,F(xiàn)G,
∵E,F(xiàn)分別是A1C1,BC的中點
∴FG∥AC,且FG=
1
2
AC

∵AC∥A1C1,且AC=A1C1
∴FG∥EC1,且FG=EC1
∴四邊形FGEC1為平行四邊形,
∴C1F∥EG
又∵EG?平面ABE,C1F?平面ABE
∴C1F∥平面ABE,
(Ⅱ)∵AA1=AC=2,BC=1,AB⊥BC
AB=
CA2-CB2
=
3

∴三棱錐A-BCE的體積為VA-BCE=VE-AB=
1
3
S△ABC•AA1=
1
3
×
1
2
×
3
×1×2=
3
3
點評:本題考查了空間幾何體中的線面關系,求解體積,證明平行問題,抓住空間平面的轉化即可,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若方程
x2
3
-
y2
sin(2θ+
π
4
)
=1的曲線是橢圓,則θ的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-y2=1(a>0)的漸近線方程為x±y=0,則雙曲的焦距為( 。
A、2
B、2
2
C、
2
D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若θ為曲線y=x3+3x2+ax+2的切線的傾斜角,且所有θ組成的集合為[
π
4
,
π
2
),則實數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正方體ABCD-A1B1C1D1中棱長為2,E為A1B1的中點,則異面直線D1E與BC1間的距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設遞增數(shù)列{an}滿足al=1,al、a2、a5成等比數(shù)列,且對任意n∈N*,函數(shù).f( x)=(an+2-an+1)x-(an-an-1)sinx+ancosx滿足f′(π)=0.
(I)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{an}的前n項和為Sn,bn=
1
Sn
,數(shù)列{bn}的前n項和為Tn,證明:Tn<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

請仔細閱讀以下材料:
已知f(x)是定義在(0,+∞)上的單調遞增函數(shù).
求證:命題“設a,b∈R+,若ab>1,則f(a)+f(b)>f(
1
a
)+f(
1
b
)
”是真命題.
證明 因為a,b∈R+,由ab>1得a>
1
b
>0.
又因為f(x)是定義在(0,+∞)上的單調遞增函數(shù),
于是有f(a)>f(
1
b
)
.      ①
同理有f(b)>f(
1
a
)
.      ②
由①+②得f(a)+f(b)>f(
1
a
)+f(
1
b
)

故,命題“設a,b∈R+,若ab>1,則f(a)+f(b)>f(
1
a
)+f(
1
b
)
”是真命題.
請針對以上閱讀材料中的f(x),解答以下問題:
(1)試用命題的等價性證明:“設a,b∈R+,若f(a)+f(b)>f(
1
a
)+f(
1
b
)
,則:ab>1”是真命題;
(2)解關于x的不等式f(ax-1)+f(2x)>f(a1-x)+f(2-x)(其中a>0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,A,B,C是三角形內角,且∠B=60°,a+c=4,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A,B,C,D,E為拋物線y=
1
4
x2
上不同的五個點,焦點為F,且
FA
+
FB
+
FC
+
FD
+
FE
=
0
,則|
FA
|+|
FB
|+|
FC
|+|
FD
|+|
FE
|=
 

查看答案和解析>>

同步練習冊答案